PieceStack: Toward Better Understanding of
Stacked Graphs

Tongshuang Wu, Yingcai Wu, Member, IEEE, Conglei Shi, Member, IEEE,
Huamin Qu, Member, IEEE, and Weiwei Cui, Member, IEEE

Abstract—Stacked graphs have been widely adopted in various fields, because they are capable of hierarchically visualizing a set of
temporal sequences as well as their aggregation. However, because of visual illusion issues, connections between overly-detailed
individual layers and overly-generalized aggregation are intercepted. Consequently, information in this area has yet to be fully
excavated. Thus, we present PieceStack in this paper, to reveal the relevance of stacked graphs in understanding intrinsic details of
their displayed shapes. This new visual analytic design interprets the ways through which aggregations are generated with individual
layers by interactively splitting and re-constructing the stacked graphs. A clustering algorithm is designed to partition stacked graphs
into sub-aggregated pieces based on trend similarities of layers. We then visualize the pieces with augmented encoding to help
analysts decompose and explore the graphs with respect to their interests. Case studies and a user study are conducted to
demonstrate the usefulness of our technique in understanding the formation of stacked graphs.

Index Terms—Statistical graphics, Time series visualization, Stacked graphs

1 INTRODUCTION

TACKED graphs, which are among of the oldest and the most

fundamental visual representations of multiple time series
data [26], have been widely adopted in various applications (e.g.,
email messages [14]], sentiments [5]], music listening histories [4]],
[136], etc.). Although this combined visualization of individual and
aggregated values has revealed interesting stories in these fields,
there are tasks where analysts may find stacked graphs insufficient.

An important task is understanding the causality between the
overall aggregated shape and individual layers. For example, a
social media analyst may use a stacked graph to explore the
popularity change in a set of Twitter hashtags over time. He may
locate a pattern of interest, such as a dent in the overall shape, and
may want to understand which hashtag(s) causes the bump and
how. However, many different ways could have led to the bump.
It may have resulted from a majority of the hashtags with similar
small bumps, or a few of the hashtags while others stay stable or
even experience a dent that actually has a negative contribution
to the aggregation. Finding the exact composition of a pattern is
important, because different compositions may provide different
clues and eventually lead to different insights.

The aforementioned task and various commonly seen similar
tasks all essentially probe the connection between aggregation and
individual layers. Unfortunately, traditional stacked graphs are not
effective for those tasks because of several limitations in their ex-
pressiveness, which makes understanding complex constructions
non-trivial (Fig. [I). First, the comparability for stacked graphs is

o Tongshuang Wu and Huamin Qu are with the Hong Kong University of
Science and Technology. This work was done when Tongshuang Wu was
an intern at Microsoft Research. E-mail: {twuac, huamin} @ust.hk.

o Yingcai Wu is with State Key Lab of CAD & CG, Zhejiang University.
E-mail: yewu@cad.zju.edu.cn.

e Conglei Shi is with the IBM T.J, Watson Research Center, Yorktown Height,
NY. E-mail: conglei.shi@us.ibm.com.

o Weiwei Cui is with Microsoft Research and is the corresponding author:
E-mail: weiwei.cui @microsoft.com.

Manuscript received October 3, 2015, revised January 4, 2015.

weak. The baselines of layers are neither parallel nor overlapping,
which makes stacked graphs inefficient for tasks that involve
comparing the trends or shapes of layers. Second, the layer order
is consistent during the entire period. While consistent order helps
users track individual layers, it also tends to emphasize global
features and neglect local ones. For example, placing layers with
similar trends together can help users discover the major trends
effectively. However, since the similarity relationships between
layers may be totally different over time, finding a universally
good order for all time points is nearly impossible, which com-
plicates the analysis of causalities at multiple time points. Third,
stacked graphs have scalability issues. The number of layers in a
stacked graph could soon lead to visual clutter, which makes the
comparison more difficult.

This study addresses these challenges by proposing PieceStack
, anew visual analytic design that enables improved interpretation
for stacked graphs. We first design a new division-and-group
clustering algorithm to deal with complex temporal data flexi-
bly. Based on the clustering results, several visual elements are
designed and integrated into PieceStack to reveal the relationships
between layers and the overall shape, and further to help users
explore the construction of the overall shape. In addition, we allow
a series of interactions in our system for users to refine the results
based on their interests. Our main contributions are described as
follows:

o This study is the first to systematically examine how stacked
graphs are generated with the individual layers by exploring
similarities/differences between layers, as well as between
layers and the overall trend, especially among local intervals.

« We propose a new algorithm of partial sequence clustering on
stacked graphs, which interprets every time period in detail
without being constrained by the overall complex changes.

o Our design of an interactive system, PieceStack, empowers
analysts to better understand the formation of stacked graphs.

C L | C D

@ (b) ©
Fig. 1. An aggregated dent at t and its involved layers contributing
differently: (a) the original graph, (b) similar layers A and B contributing
positively, (c) similar layers C and D, in contrast, contributing negatively.

Layers in (b) and (c) are reordered to emphasize the otherwise inappar-
ent similarities of layers and the negative contributions in (c).

2 RELATED WORK
2.1 Stacked Graph

A stacked graph is a well-established visualization method for
time-varying data on one common timeline. Many recent studies
have focused on improving its visual perception. The first major
step was made by Havre et al. [[15], who proposed ThemeRiver
in which layers are visualized with smooth curves and stacked
in a symmetrical shape. Given improved visual pleasantness,
their idea was widely adopted and inspired more research. For
example, Byron and Wattenberg [4] introduced Streamgraphs,
which improved the legibility and aesthetics of stacked graphs.
The color was also used to make the hierarchical structure more
visible in the stacked graphs [33].

Besides improving aesthetics and legibility, researchers have
attempted to improve utilities by combining stacked graphs with
additional tools and visual elements. For example, NameVoy-
ager [[16] combined filtering capability with stacked graphs,
thereby enabling rapid exploration based on prefix text search.
Baur et al. [2] presented TouchWave as an extension of stacked
graphs for multi-touch capable devices that provides a variety
of layout adjustments to address the problems of legibility, com-
parison, and scalability. RankExplorer [28|] embedded color bars
and transition glyphs to help users analyze ranking changes.
TextFlow [7]] enhanced stacked graphs with a flow-based metaphor
to support merging and splitting relationships among layers.
TIARA [21] integrated text summarization techniques to explore
large collections of documents. Dork et al. [8] described a highly
interactive system based on tailored stacked graphs to visualize
a continuously updating information stream. LoyalTracker [29]
was designed as an augmented stacked graph to show the flows
that enter or leave the graph so that user loyalty can be tracked
for search engines. EvoRiver 31| separated stacked graphs into
different strips to deal with time-varying coopetition power. By
augmenting the richness of visual encodings and incorporating
various interactions, these studies have equipped stacked graphs
with new capabilities to deal with various types of data or to
support specific needs from applications. Our work also belongs
to this category. However, compared with the existing work, ours
is more introspective by focusing on helping people understand
the construction of stacked graphs.

2.2 Clustering Algorithm

Clustering of time series data is useful in multiple domains [27].
A comprehensive investigation can be seen in [20]]. For instance,
Singhal et al. [30] clustered multivariate time-series data based on
principal component analysis (PCA) and Mahalanobis distance,
Wang et al. [34] also processed measured distances with the
structural statistical characteristics for clustering. Xiong et al. [[35]]
proposed a model-based procedure, clustering time series with

2

autoregressive moving average, and Frohwirth-Schnatter et al. [[10]]
pooled time series into several groups using finite-mixture models.

Trajectory clustering and curve clustering, which are charac-
terized by high dimensionality and the need to preserve the shape-
level smoothness or temporal information, could also be used for
time series clustering essentially. Gaffney [11] proposed a cluster-
ing model based on polynomial mixture model with expectation-
maximization (EM) algorithm, and []1] fitted the temporal data
with B-spline before the clustering procedure to emphasize the
functional nature of the objects. Several strengths and weaknesses
of the trajectory clustering procedure are examined in [22]].

Although these algorithms have been proved useful in many
fields, they all cluster time series sequences, trajectories, or curves
as a whole, which is not useful in discovering partial similarities.
Time series clustering involves a popular branch that breaks away
from the whole period, namely, sub-sequence time series cluster-
ing (STS) [[12], [[13]], [18]]. STS clusters sub-sequences extracted
from a given single time series. However, STS could not be simply
adjusted for our objective because it predefines fixed features with
a clipping window as inputs for comparison, while the feature
space for partial sequence comparison could vary significantly.
The most capable algorithm for catching common sub-trajectories
is TRACLUS [19], which partitions a trajectory into a set of line
segments, and then groups similar segments together. The visual
navigation of the simulation processes’ parameter space in [3|]
works similarly, in the sense that it partitions time-dependent
volume data and then processes density-based clustering. How-
ever, both algorithms fail to consider the temporal synchronism
of the data: the former one only focuses on the possible spatial
paths of the trajectories, and the latter collects all the segments
as one set for further clustering without considering time period
correspondence. Inspired by their partition-and-group frameworks,
we propose a clustering algorithm (Section [B) specifically to
discover partial trends in stacked graphs.

3 DESIGN CONSIDERATION
3.1 Problem Analysis

In previous research, we incorporated stacked graphs into several
designs to analyze various data. we found users were easily
attracted to shape-related features, such as bumps, dents, or even
waves in the overall aggregated shape, and were naturally curious
about their causes. Their related concerns could be categorized
into three progressive groups, namely:

Layer versus layer. This category refers to basic questions
related to comparing layers. Questions like finding layers’ similar
trends in a short period are basic and important for more advanced
patterns, such as their relations to the overall shape. However,
since scalability and comparability are short tabs for stacked
graphs, finding similar layers usually requires additional tools.
Moreover, visual clutter also makes it difficult to directly find
significant patterns from each layer.

Layer versus aggregation. Such questions concern the re-
lations between individual layers and their aggregation, with the
core interest lying in the generation of the latter. Some interactions
like layer reordering and baseline straightening can help with these
tasks. However, they could soon become inadequate when patterns
become more complicated or involve multiple time points. Thus,
more advanced techniques are required.

Aggregation versus aggregation. This set of questions is
more about understanding higher-level aggregated features. Be-

sides understanding one aggregated pattern, connecting the causes
of different patterns is also important: it can further help users
gain insights into the structure of the aggregation, which is the
dominant visual factor. In addition, users may find that the overall
shape loses too many details. Therefore, spliting the stacked graph
into two or more graphs with more salient features could provide
more concrete insights.

3.2 Requirement Analysis

In response to the aforementioned questions, we compile the fol-
lowing list of design requirements to further explore the relations
among layers and their aggregation.

Partial clustering. Supporting clustering is the basic and
foremost requirement of our system. Clustering layers with similar
trends is an obvious method to reduce difficulty in problems
involving comparisons. Because of the frequent changes in the
data, partial clustering is further desired to interpret a stacked
graph correctly, such that the local features could be emphasized.

Showing clustering results in the stacked graph. Clustering
clips the stacked graph into multiple groups of sub-layers and
reduces the overhead of cognition. Therefore, clusters should
be encoded into the original stacked graph intuitively (e.g., the
durability of a cluster), and the construction of the total stacked
graph should be indicated with all the clusters.

Tracking the distributions of layers in the entire period.
Partial clustering may segment a layer into multiple clusters based
on its trends at different time points. Tracking how a layer groups
with other layers over time may reveal the frequency by which
the layer breaks away from its previous group. The clustering
distribution of a layer could also reveal its overall development as
well as its behavioral similarities and differences with other layers.

Comparing clusters at certain time points. Although clus-
tering could roughly reveal the trend distributions of layers, users
have difficulty in understanding the formation of aggregations
visually. Do all clusters share similar trends with the aggregation,
or does it merely convey the patterns of clusters with numerically
significant sequences? To understand this, we have to encode the
contributions of clusters to the overall shape. Besides, aggregated
features at different time points may be caused by different groups
of layers. Understanding the relations between the causes can
further help users understand the evolution of layers.

Filtering region of interests. Although the burden of clutter
is lightened by clustering, stacked graphs still suffer from visual
ambiguity because of biased baselines. Therefore, filtering is
needed so that some regions of interest could be extracted and
studied individually or comparatively with the filtered out ones.

Supporting interactive refinements. Though the system aims
to automatically interpret stacked graphs, it should still implement
interactions to help explore clustering and display results.

4 SYSTEM OVERVIEW

The objective of PieceStack is to help understand the relations
among individual layers and those with the overall aggregated
shape of stacked graphs. It is possible to encode statistical
measurements (correlations, similarities, etc.) individually in a
supportive view. For instance, a density map could express the
similarities of layers and the aggregated shape at every time point,
with dark red being highly similar (e.g., bump versus bump) and
dark green highly dissimilar. However, imagine if various thick
layers are ordered consecutively, the reds and greens may interlace

ly . .
Stack visualizer

1

1 1

1 1

1 1

1 1

| ¢ oo ¢h® 9 |
) °0¢

1 VAL !

1 1

: Selec;l Brushl :

};«&c\q 0s”0 2, :

%% SooouliR DAL A

"’\,N NS |

1

1

¢ 1

1

Fig. 2. System overview: PieceStack consists of two major modules,
namely, clustering processor and stack visualizer.

too frequently for making effective comparisons between layers, or
to observe if aggregations at different points are constructed in the
same way. Similar ideas projecting measurements into other forms
(e.g., scatter plots) could experience similar difficulties: given that
the spatial information (e.g., temporal sequences, layer ordering,
width, etc.) could not be mapped precisely onto the supportive
views, the switch of attentions could introduce difficulties into
observations of specific layers or temporal positions. Therefore,
we focus primarily on directly augmenting stacked graphs, such
that the additional encodings be seamlessly integrated without loss
of stacked graphs’ original information.

Fig. |Z| summarizes our design with its two main modules.
When a collection of temporal sequences (essentially layers in
traditional stacked graphs) is loaded to PieceStack, sequences are
first partitioned and clustered based on their local trend similarities
with the clustering processor. The stack visualizer then transforms
the output (i.e., a set of clusters of sequence segments, each
with respect to a certain time interval) into a comprehensible
overview visualization. The overview is built upon a cluster-based
stacked graph presenting cluster characteristics, with overlaid
glyphs that explain the contributing factor of the clusters at each
time point. Given the overview information, users could interact
with PieceStack, such as brushing, selecting, and decomposing it,
to further explore the effects of layers on the aggregation and the
correlations between aggregations at different time points.

5 PARTIAL TIME SERIES CLUSTERING

(a) Time interval segmentation

(c) Recursive interval clustering <}

a,b,c,d a [} b |C d
[

a+((b,c) +d) L a+(b+(cd) b .V“‘/—:—\“I,:

b+c — (bc)+d—> a+(bc,d —> ab,cd

3-

! ! ;
N 1 1

(©) po-déwn ré-labéling

-

Fig. 3. Clustering algorithm workflow and the four steps, namely, (a) time
series segmentation, (b) per-segment clustering, (c) recursive cluster
merging, and (d) top-down re-labeling.

Since layers’ similarities could vary greatly in different time
intervals, simply clustering time sequences on the whole time

period could miss local common sub-sequences. Therefore, our
clustering algorithm aims at partial trend similarities which, as
the name indicates, refers to similar shapes in curves defined
on the basis of some specific time intervals. To achieve this,
we borrow the idea of partition-and-grouping from [19] to find
dynamic patterns of varying lengths. Strategically, our algorithm
starts with time interval segmentation (Fig.[3[a)), which simplifies
and over-segments the whole time period into small intervals with
varying lengths, so to reveal local similarities properly with layer
segments defined on these intervals. We analyze the in-interval
and cross-interval similarities with these segments thereafter: we
first group similar segments in each time interval independently to
locate patterns in static intervals (Fig. B(b)). Then, by comparing
the grouping results in different intervals, we construct the ones
of varying lengths that best represent the evolution phases of the
dataset (Fig. [3c) and (d)). Because of the partition-and-grouping
involved, the clustering strategy is not exclusive. Therefore, we
identify the following criteria in designing the algorithm:

C.1 At each time point, the most general similarities should be
found and the understandability be preserved by preventing
the splitting of the stacked graph into too many clusters.

C.2 For the entire period, similar patterns with long duration
should be found to reveal stable and disciplinary patterns
instead of fragmentary ones.

The steps involved, namely Fig. 3(a) time interval segmenta-
tion which finds segments representing original layers, (b) per-
interval clustering which groups similar segments locally in static
intervals, (c) recursive interval merging which locates clusters of
varying lengths, and (d) top-down relabeling which concludes the
clustering results by re-visiting the output of iterations in (c), as
well as their complexities, are described in detail below.

Time Interval Segmentation: The intervals that are used
to segment sequences must be chosen appropriately to preserve
curve characteristics. We can neither cut one obvious curve feature
into two time intervals, nor overly segment them to make features
fragmentary. Therefore, we have to extract the main features of the
temporal sequences to ensure that the comparison of complicated
real-world time series data is reasonable and general. Suppose we
have n temporal sequences, Ly, ..., L,, then we first normalize them
by subtracting the mean value in the sequences and dividing all
values by the standard deviation to extract the trends by enhancing
the shape aspect of the sequences [11]. This normalization may
enhance local features by exaggerating their curvatures, which is
also commonly observed in SIS clustering [[13|]. We then approx-
imate each normalized sequence with a series of line segments
with piecewise linear representation (PLR). In this specific case,
we choose Douglas-Peucker algorithm (DP) [9] for its accuracy.
This PLR procedure could automatically neglect the unwanted
noise, and obtain major developments in sequences.

Thereafter, we need to partition the entire period based on
the approximated sequences, denoted by [y,...,l,, into m time
intervals for further usage. We denote s; ; as the jth unit segment
of the ith sequence where i ranges from 1 to n, and j from 1
to m. Since time points have practical meanings, we choose the
unit segment splitting points identically for all the sequences to
ensure time-series correspondence. Specifically, we gather all the
inflexion points in the approximate sequences (i.e., [, ...,I,) into
one set, and analyze their distributions along the time axis. We
first delineate several ranges in which a large number of inflexion
points fall. Then, in every range, we take the average position
of the in-range points as the position for a splitting point. In this

4

way, the points selected could reasonably reveal the most common
transition points for the overall sequence trends, and thereby split
the original sequences into distinct time intervals that best preserve
sequence characteristics. These time intervals form a set S;, and are
then used as the basic time intervals, which are used to generate
unit segments (i.e., s; ;) for all sequences.

Per-interval Clustering: To find natural clusters in each
basic interval (C[I), we group all n layers in each time interval j
independently into k clusters using DBSCAN [17], with k varying
in each time segment. We choose DBSCAN because it is the most
representative density-based clustering algorithm, and it could
cluster data into an appropriate number of groups automatically
as long as the variables for fault tolerance are specified. Most
clustering methods (e.g., K-means) require specifying the cluster
number, which is unrealistic to be determined subjectively for
all basic intervals without foreseeing data complexity in each
time segment. As for the distance measurement in DBSCAN, we
use dynamic time warping (DTW) [23]], which is an algorithm
for measuring similarity between two temporal sequences. To
make sure our algorithm reveal relatively significant result, the
MinPts for DBSCAN (i.e., the minimum data objects required
inside the cluster) is set to be one tenth of the overall number
of total segments in an interval. With MinPts set, we follow the
conventional approach introduced in [25] for choosing Eps (the
radius of the cluster): for some MinPts, we find the MinPts-th
nearest point’s distance for every point, and sort them in increasing
order. There is generally a point with MinPts-th nearest point’s
distance being distinctly large, and the last MinPts-th distance
which is not drastically different becomes Eps.

Recursive Interval Merging: In the previous step, all unit
segments of layers are clustered inside individual basic intervals
independently. Therefore, cluster durations are also bound by basic
intervals. However, in real applications, one cluster may easily
cover multiple consecutive basic intervals. Thus, we would like
to recover the cluster duration information (C[Z) by recursively
merging basic intervals. By merging, we intend to find layer
clusters that have a long duration by comparing clustering results
in consecutive basic intervals.

The basic idea is to enumerate all possible ways of grouping
the basic intervals, and find the best grouping strategy based
on a cost function. Practically, the calculation is recursive and
may be represented as a tree (Fig.). Each node in the tree
represents a way to partition the sequence of basic intervals. A
parent-child edge represents adding one more partition point to
the partition strategy in the parent node. The tree keeps growing
until none of the tree nodes can be further partitioned. Therefore,
a grouping strategy is equivalent to a leaf node. We use dynamic
programming to find the best strategy. For convenience, we denote
lZf’ = {Sia,...,sip} as the segment of the ith layer in the pth
partition level (i.e., being divided into p segments) formed by

unit segments s; g, ..., », and G;‘f as the clustering result of these

segments. G;‘;ﬁ, ..,G%% form G%”, which is the clustering results

for all the segments s; ; in the pth partition level.
Starting from every segment at partition level one (i.e., lll_"l'.”),

we recursively divide the segment into two sub-segments: lg’_f_léi =

{Sias.-y5is} and l;illll’ ={Sis+1,-8ip}, wherea+1<s<b—1,
until llalf’ could be partitioned into two unit segments in basic time
intervals or if it is a unit segment itself (i.e., b=a-+1 or b = a).
We compare them by computing the intersection between every

two clusters with a fault tolerance. Specifically, for segment l;jf,

a,s s+1,b .
IPH_[and IPH_[are in the same cluster as

the corresponding sub-segments from another segment lZf, or if it
is similar to the representative curve of a cluster, it is allocated to
a cluster; otherwise, it is marked as unclassified. Allocations for
all the involved segments constitute G%”. N%* denotes the number
of clusters that Gf,‘b contains.

Since we would intend find the most general patterns (C[I)), we
greedily select the partition position s that could (1) minimize the
number of un-clustered segments and (2) result in the smallest
possible number of clusters under the condition of (1). This
condition ensure that the algorithm neither clips the layers into to
many segments, nor generates too many clusters at a time point:

if its two sub-segments

. a,b
s = argmln(Nunclassified7Np)

a,s s+1,b)
p+1 = p+1

Gg’b = merge(G

Top-down Re-labeling: Once the best grouping strategy
is calculated, we use the result to combine the obtained clustering
results G in each grouping level, and to change the layer segment
labels accordingly (C[Z). First, all unit segments are labeled
unclustered. We start traversing from p = 1 to the maximum p
recorded in the merging step to allocate all the unit segments.
Specifically, for a layer [;, if its unit segment s;; is marked
unclustered at level p and the cluster it belongs to at that level still
contains enough unclassified segments, then we mark its clustering
result as its allocation in G; p.

Complexity Analysis: The complexities for the most steps
are intuitive: time interval segmentation and per-interval clustering
are bound by the complexity of DP algorithm and DBSCAN
respectively, both of which are O(nlogn). The top-down re-
labeling step will check at most mn segments in each iteration,
and therefore results in O(m?n). The recursive step, on the other
hand, will take up the most time. Typically, for an iteration at pth
partition level, its complexity could be expressed as

T(p) =2T(p—1)+f(n), 1<p<m

where f(n), being O(nlogn), denotes the complexity for
computing intersections of clusters for two consecutive intervals.
This equation leads to the final complexity of O(2"nlogn). Since
MinPts is less than one tenth of the total number, m will be less
than ten. Thus, it could afford dealing with complex massive data.

6 VISUAL DESIGN

We develop a visualization method to present the otherwise too
abstract clustering results and reveal the connections between
accumulated and individual data. Our design follows four design
principles, namely legibility [4], [32]], aesthetics [4], [15]], neat-
ness [29], and faithfulness [29], as discussed below.

6.1 Stacked Graph Constructed with Clusters

Instead of visualizing the data layer by layer on the entire period,
we place segment clusters generated in clustering processor in-
dependently on the time axis. As shown in Fig. [4[b), we ensure
that layer segments within a cluster are stacked consecutively and
use independently chosen colors to represent clusters. Segments
that do not belong to any clusters are colored grey. The number
of clusters is normally much smaller than the layer number. Thus,
a cluster-based stacked graph could efficiently improve scalability
to a certain extent while preserving a reasonable level of detail for
individual sequences, thereby improving legibility.

5

Since clusters may be located in the middle of the entire
period, ordering clusters with overlapping periods inappropriately
could elevate some regions of one cluster abruptly (Fig. @fa)).
Fortunately, information from the clustering procedure could help
with the ordering scheme. Since clustering is processed recursively
starting from segments on the entire period, leaf nodes (segments
allocated to clusters on a certain level) do not overlap with those
in their parental levels. Thus, cases in Fig. fa) could be avoided
by stacking the clusters following their orders of allocation in
the top-down relabeling step, and the noises at the top to fill the
gaps. This ordering naturally stacks clusters by their durations, i.e.,
shorter clusters are always placed on top of longer ones. This could
ensure our design to be more legible and aesthetically pleasing.

@ (b)

Fig. 4. Comparison of different ordering: (a) due to the sudden changes
in the lower cluster, all cluster above encounter a jacked-up effect and
become incoherent; (b) properly ordered clusters are smooth, with every
color representing a cluster, and grey for outliers.

6.2 Glyphs Encoding Contributions

Although our partitioned stacked graphs could ease clutter prob-
lems and indicate trend distributions, the baseline for each cluster
is still distorted, and relations between clusters and the aggregation
remain unclear. We solve this issue by quantifying the concept
of contribution and augmenting the stacked graphs with visual
glyphs, and thereby ensure faithfulness: we encode the per-cluster
contribution, which summarizes the contributions from segments
in a cluster (i.e., with similar shapes) compactly. We also encode
the average contribution from all layers.

Specifically, we first compute the per-layer contribution. The
per-layer contribution for a time point is a comparison between a
layer’s local shape, which is defined using two consecutive time
slices formed by ¢; and its neighbors #;_; and #;;, with the ag-
gregation’s. The magnitude and direction of a layer’s contribution
in a slice (e.g., between #;_; and t;) are determined separately.
The magnitude measurement is inspired by short time series
distance [24]. It is the absolute value of the difference between
the slopes of the selected layer and the aggregation in the time
slice. The direction is set to be positive if the two slopes share
the same sign, and negative otherwise. The contribution of the
sequence at f; is the average of the two time slice contributions.
We then compute the per-cluster and average ones:

« per-cluster: the mean of per-layer contributions in a cluster,
« average: the mean of contributions of all layers, regardless of
cluster information.

Contributions could be encoded in multiple ways, such as
glyph directions (upper and lower triangles) or transformations
(rotating diamonds). However, for distinguishing the per-cluster
and average contribution while still reserving the encoding con-
sistency for the direction and significance of every contribution,
we choose to use glyph colors and types (Fig. ??). We use
red and green representing positive and negative contributions
respectively, and the saturation for the significance of the con-
tribution. The red-and-green encoding follows the color scheme
for stock markets. Grey glyphs reflect that the involved segments,
on average, are developed similarly to the aggregation.

We represent per-cluster and average contribution at each
time point with diamonds and circles, respectively. Per-cluster

contribution diamonds are located at the middle of each cluster
at every time point. The average contribution circles are on the
borderline (i.e., aggregated shape of all the layers) of the stacked
graph. This borderline is denoted with a dashed line. While in the
overview, circles are all placed precisely on the dashed line, they
would offset slightly in response to the effects of decomposition.
The objectives of the dashed line and the offsets are further
described with the interactions (Section [6.3). For visual clearness
(i.e., neatness), instead of covering the whole stacked graph with
diamonds, we only display those with apparent red or green on
default (i.e., significant contributions), while the others are shown
only by interaction. We later noticed in preliminary reflections that
some users still found the visual form too informative even with
this pre-defined significance ratio: they argued that the overlaid
glyphs could interfere with other patterns. Therefore, for visual
simplicity, we decide to offer the option to deliver the glyphs on
demand. For instance, users could choose to only display a chosen
range of glyphs when the they want to check the contributions for
some clusters in some intervals.

6.3

Displaying all the information at once is impractical, so we start
with only one stacked graph as the overview, and then we provide
the following three interactions for progressive exploration.

Brushing. Brushing on a visual element provides users with
basic information, so that they can decide whether to further
evaluate the element. Our system provides three brushing targets:
layer, cluster, and aggregation. Since all clusters are ordered
independently in each time interval, the distribution of every layer
across clusters is not apparent. To compensate for the destruction
of layer continuity, when users brush a layer segment in any
cluster, our system highlights the other segments that belong to
this layer over the entire period. Brushing a cluster is equivalent
to brushing all segments inside, which could show if this cluster
of layers remains a cluster at the other time points. For the
aggregation level, all the diamond glyphs along a time point are
displayed when the aggregation at that point is brushed, which
enables comprehensive comparisons between all the sequences
and the aggregation at the point.

Selection. Selection is designed to pinpoint aggregations at
certain time points and compare their causes of construction. The
similarity of the causes is measured with normal mutual informa-
tion [6], a typical method for comparing clustering results. For
simple yet effective visualization, we draw connections between
the time points being compared and color the links to clearly
represent similarities (a real number in [0,1]), with green being
highly different and red being highly similar. When a time point
is selected, all of its correlation links are shown to locate regions
that share significantly similar or different clustering results.

Decomposition. Users could drag individual sequences or
clusters back and forth to construct multiple unique stacked
graphs with any combination that they might find interesting.
For instance, users could locate a cluster responsible for an
aggregated feature, and drag it out to construct another graph
to see whether this group also contributes to other interesting
patterns. A dashed line is drawn constantly in all the graphs,
so to preserve the aggregation shape of all the sequences. The
glyphs are drawn independently in each stacked graph, and the
circles representing average contributions are offset slightly from
the dashed line, with the offset distances encoding the differences

Interactions

6

with the average contribution of all sequences (Fig. E[) Circles
placed higher indicate that data in the graph are more responsible
for the aggregation than average (either positively or negatively),
and less responsible otherwise.

© Ve

99, \1.2
O\Q,‘

tle

et
o b e, t 13

> A v} - A
Fig. 5. Example of decomposition. The average contributions at time
point t1 and t2 in the complete graph (a) are both negative. After
decomposing cluster A, (b) shows the remaining layers have a positive
average contribution at t1, and its absolute value is bigger than that in
(a). Similarly, (c) indicates that A has a stronger negative contribution to
the aggregation at t1. Layers in (b) and (c) hold a stronger and a weaker
negative contribution at t2, respectively.

@ ftiep ©
/ @

7 CASE STUuDY

We apply PieceStack to two datasets in this section. The un-
employment rate of industries is mainly to demonstrate basic
functionalities, while the Twitter data is more comprehensive for
evaluating the usefulness of PieceStack.

7.1 Unemployed US Workers by Industry

g LY
o] § o eto-e
. | a e e
oo Y * P ., B . AP D
8000 . >0 > Y ' . - -

000 “goo«""b"‘ ¢ ~‘l. '$OO..‘°"‘°"I. % 0:0-0-8' 3V
00, E / - !
iy OSSR R AN e ANy S [D T R o a2 *e,) ettty ot \ Y
'8.eb 2000 '9, Sep 2001 F 1. Apr 2003 9. Nov 2004 11, Jun 2006 11, Jan 2008 1. Aug 2009
(@)

s Information Wholesale and retail trade
w000 & X i X
0] 8 Business services Manufacturing

Fig. 6. Overviews of unemployment rates of 14 industries from 2000 to
2010 with (a) PieceStack, with six extracted clusters marked as A-F; (b)
traditional stacked graphs for comparison.

We use the unemployment rates of 14 industries from 2000
to 2010 collected by the US Bureau of Labor Statistics to
analyze if the rates among industries share similar variations,
or if the summation is similar to the individual rate sequences.
The industries include mining and extraction (ME), transportation
and utilities (TU), wholesale and retail trade (WRT), construc-
tion (CON), leisure and hospitality (LH), self-employed (SE),
manufacturing (MANU), information (INFO), business services
(BS), government (GOV), education and health (EH), agriculture
(AGR), finance (FINA) and others (O).

Business services Information

Manufacture Wholesale and retail trade

Fig. 7. Expanded small multiples for sequences in cluster E. The similar
wave-like trend shows that the clustering is reasonable.

In the PieceStack overview (Fig. Eka)), we notice that there are
six clusters extracted. Two of them are over the entire period (clus-
ters E and F) representing stable correlations of unemployment
rates. The other clusters are in partial time intervals (clusters A-D),
indicating similarities only during a short period. To demonstrate
the clustering result, we expand cluster E and draw the contained

120.00
100.00
80.00 |

Aggregation

60.00 4

20.00 —

Average contribution

e 1"w I ‘e 61 % ® o __° e o0 e ©©
40.00 0% e o ®
L 2N 4

7

Cluster/Layer contribution ~ Positive Il 1 Negative

Contribution color encoding

¢+ ¢ ¢ ¢ ¢
0.00 :
8, Feb 2000 9, Sep'2001 11, Apf 2003 9, Nov 2004
5 (@)
120009
g o ® [3 °,
10007 8 L4 0.0 o %le o0, P AR °
80.00 .o L.*" e .
2 o o000 9. LS, 00 900
60.00 Nle L ‘ sL.0- L-k-
40.00
20.00 -
000\0. P AN T T kAR Y e S 2T TR S Y S SOy S SO SN SN =024 ¥ CTES
8, Ftb'2000 9, Sep'2001 11, Apf 2003 9, Nov'2004 11, Jurl 2006 11, Jarl 2008
(b)

Fig. 8. Decomposition results: (a) the graph with F filtered out; (b) the graph only containing cluster F; (c) the decomposition of (a).

industries in Fig. [7]] We confirm they do share similar trends.
However, this is unapparent even if we clearly indicate these
industries on the traditional stacked graph (Fig. [6(b)).

The glyphs representing contributions are also informative.
Observing the distribution of diamonds, we notice that cluster F
overlays red diamonds almost everywhere, whereas other clusters
display a significantly smaller number of less saturated diamonds.
This means that sequences in F are the primary contributors
to the aggregation. We are thus interested in the effect on the
aggregation if these industries in F are filtered out. We decompose
the stacked graph into two sub-graphs, one only containing cluster
F (Fig. b)) and the other consisting of all the remaining clusters
(Fig. [B(a)). Comparing the offsets of the circles, we find that
filtering out these industries can significantly reduce the salience
of the local bumps, and the remaining industries have a much
lower contribution overall. However, some exceptions occur. For
instance, the average contribution at point a increases in Fig. [8fa)
and decreases to negative in Fig. [§[b). This suggests that the small
bump is not caused by cluster F. Further decompose cluster E, we
can clearly see from the results in Fig. [§] that this bump is formed
by three groups, F, E, and C+D. Specifically, cluster F has a green
circle that indicates negative contribution or inverted trend to the
aggregated bump. Cluster E has a light red circle that indicates its
trend is subtle but aligned with the average local trend. Cluster C
and D are the main causes of the bump, since the figure shows a
dark red circle with a positive offset. Though the bump itself is not
significant enough to raise public concerns, it may worth further
investigation since it is an outlier pattern. However, this pattern is
extremely hard to find in Fig. [6(b).

7.2 Twitter Data about Ebola

550000
500000
450000
4,00000

500,00]
.00

‘
5, Aug 2014 2,55 2010 18,5ep 2004 24,5ep 2014 29, Sep12014

B A3 2014 14, AUG 2014 20, AUB 2014 26, AB 2014 31, AUB 2014 6, Sed 2014

Fig. 9. Overview of the top 1000 most popular hashtags related to
Ebola in August and September, 2014. Eight clusters are identified with
different colors.

A total of 1,175,263 tweets containing the word “Ebola” are
extracted for Aug and Sep 2014, during which the Ebola pandemic
reached a climax. We analyze the hashtag distributions to learn the
degree of public interest on Ebola and their trigger events. Fig. 0]
shows the overview of the top 1000 frequently occurring hashtags
with “#ebola” filtered out. However, initial explorations show that
most hashtags are neither significant enough to affect the aggre-
gated shape, nor do they attract attentions for further analysis.

Nevertheless, we observe that the top 150 hashtags (Fig. [T0) are
significant enough for the overall trend. Thus, for narrative clarity,
we use these hashtags in the following discussions.

"3, Aug 2014 8.Aug 2014 14, Aug 2014 20,Aug 2014, 26,Aug 2014 31, Alug 2014, 6,560 2014

Fig. 10. Overview of the top 150 popular hashtags. The overall trend is
similar to the one in Fig.[9]

1

400001 §
350000 B
20000
250000000

200000
180000
100000

s000 -7

. vt PTIN " -
Tomotos oadmu wasmu oadmuw o madme odemu ssdmn msdmu e
e e b E e R e e Sl St I Tl

H Y 8, Y b vad)
1Zoom in " Ly DR b 8 |
! [} o N

2,Se92014 25,50p2014.
=

Fig. 11. Cluster A from Fig.[T0] the only cluster defined on the whole time
period. The red circles indicate that this cluster has positive contributions
to the overall shape at most time points.

Fig. shows there is one cluster (A in Fig. generated
with respect to the entire period. Extracting this cluster (Fig. [TT)),
we observe that its shape is mostly aligned with the overall
aggregation (i.e., the dashed line). A further investigation of the
cluster shows that its main members include “#ebolaoutbreak” and
“#breaking”, which are the two most commonly tagged hashtags
(other than “#ebola”) used to denote that a tweet is related
to Ebola (e.g., “President Ellen Sirleaf : we need HOPE not
fear. #ebolaoutbreak™), and therefore could represent the overall
popularity of Ebola on Twitter. However, exceptions still exist.
For instance, in Fig. [T1] the average contributions at location a
and b are negative. In contrast to the overall mild bump at these
two locations, the blue cluster shows a dent. We go back to the
overview and, after a few interactions, we discover that the bump
is caused by the highlighted outlier hashtag “#forwardnigeria” (a,
Fig. @) Twitter users decided to use this hashtag on Aug. 10
to promote important facts about Ebola, such to help clarify the
almost concurrently widespread rumors in Nigeria about curing
Ebola with salt water. Brushing this layer shows it is a brief focus
and almost remains untagged at all other time points.

To compare with this entire-period cluster A, we extract the
orange cluster (B, Fig. . As in Fig. the layers are not
clustered during Aug. 26 and Sep. 8, but are split into cluster C and
D later. We also find that this cluster generally has positive contri-
butions during period 77 and 73 (the negative contributions in 74
are caused by the outlier hashtag “#forwardnigeria” as discussed
before) and irregular contributions in period 7. This may be
attributed to the relatively more unexpected events encountered in

T T ey Ty
Zoom |nI I 0

Fig. 12. A stacked graph formed by layers contained in cluster B. This
graph generally has positive contributions in 77 and 73 and irregular
contributions in 7.

period 77 and T3 than T;. For instance, “#zmapp”, the experimental
medicine for Ebola, was first discussed in early August when the
US government used it on two patients (e.g., “US has #ebola cure.
Just letting Africans die! #zmapp”) and when the World Health
Organization (WHO) endorsed the use of ZMapp on Aug. 12 to
combat Ebola. It was re-visited when Liberia announced to receive
ZMapp from the US on Sep. 13, and when the first case was
discovered in America on Sep. 30 (“ #Ebola disease confirmed in
@Dallas. I wonder if he will get #zmapp”).

“#forwardnigeria” is not the only bursting hashtag triggered
by short-term events. Filtering out alike ones, the remaining
hashtags that stably occur overall (i.e., aspects that were constantly
concerned) are obtained, as in Fig. @ We can see the aggregated
shape is affected greatly: bumps at time points when bursting
hashtags appear (d, e, f, and g) disappear. However, main peaks
a, b, and ¢ remain. All clusters at these three points have positive
contributions (i.e., red circles). However, the green correlation
links (h and i) between them indicate that their clustering results
are different. For instance, for bumps on Aug. 8 and Sep. 16 (a
and b, Fig.[13), when referring back to the texts, we find that their
dissimilarity is because their trigger events are different. WHO
declared the Ebola epidemic an international health emergency on
Aug. 8, which attracted considerable attentions and increased the
demands for information regarding the prevention and treatment
of Ebola. Thus, related hashtags (e.g., “#ebolavirus”, “#howto-
preventebola”, and “#factsonebola”) raised to form a bump. In
contrast, bump b was due to President Obama’s announcement
that the US military would be sent to West Africa to combat
Ebola. Twitter users were concerned about this decision’s effect
on the conflict between America and ISIS with hashtags such as
“#usa,” “#military,” “#isis” (“No troops on the ground to fight
#isis, instead let’s send our heroes to fight Ebola?”).

Fig. 13. Hashtag visualization with one-time outliers filtered out.

8 USER STUDY

To further demonstrate the effectiveness of PieceStack, we con-
ducted a comparative study with a benchmark system formed by a
classical stacked graph. In the benchmark system, users can drag
layers freely, place layers with respect to their interests, or arrange
layers around their preferred baselines directly.

Twenty experienced computer users were recruited, including
13 males and 7 females. Their average age was 23.5 (from 21
to 29, median 23). 6 of them reported to had seen a stacked
graph before, and one was familiar with time series visualization
techniques. A compact dataset containing twelve layers (60 time

8

points for each layer) with clear shape patterns was chosen for
this user study. We use the same dataset in both systems to ensure
the task difficulties are not affected by patterns’ significances. For
each user session, we started with a brief tutorial of both systems,
and encouraged the users to freely try and to ask questions. They
were then asked to finish five simple yet representative tasks with
both systems. The tasks were designed for verifying our system’s
capability of solving the problems summarized in Section [3}

T.1 Find the most contributive layer(s) for an aggregated bump;

T.2 Find the types of contributions (significantly positive, signifi-
cantly negative, or trivial) of all layers to an overall bump;

T.3 For two aggregated bumps, find the layers that have the same
type of contributions;

T.4 Find the layer(s) that contributes the most to the overall
aggregated shape on the whole time period;

T.5 For a given layer, find layers that are similar to it at least in
some time intervals.

We originally designed it to be a cross-over study to elimi-
nate potential bias. However, our initial experiments showed that
users starting with PieceStack significantly out-performed those
following the inverse order when using the benchmark system,
while their performances with PieceStack stayed identical. These
users reflected that since the layers were specifically organized
in PieceStack, they were more informed on some tasks when
moving to the benchmark one. For instance, on TQ with the
knowledge from clusters and glyphs, they would consciously and
confidently look for a certain number of layers in the benchmark
to fit into different types of contributions quickly. In contrast,
the layer placements in benchmark hid this information. Given
this situation, we decided to follow the benchmark system to
PieceStack order, such that the ordering would not introduce
additional bias.

We analyzed the answers and the time that the participants
spent on each task with both systems. Overall, our system guaran-
teed improvements in accuracy and efficiency. While the average
time for completing each task are shortened approximately by half
using PieceStack (with TE| being an exception, improving from
109.384s to 30.458s), the performance improvement varied more:
for easy tasks like T[I] most users provided correct answers with
both systems, and the accuracy is only increased from 99.58% to
100.00%, while it raised from 85.83% to 99.17% for the more
complicated T[3] Fig. [T4] shows more concrete comparisons.

Several subjective measures for PieceStack were also pre-
sented, with respect to the overall effectiveness, and the use-
fulness of some PieceStack designs involved in completing the
tasks. All the measures were rated on a five-point scale, with 5
being strongly positive, and 1 strongly negative. Users’ responses
showed that they found Benchmark slightly more understandable
(rated 4.35 versus 4.25 on average, with SD both being 0.75),
and PieceStack easier to use (mean = 4.1, SD = 0.79 versus
mean = 4, SD = 1.17). The significant rate difference for the
usefulness problem conveyed that they agreed PieceStack to be
much more useful (mean =4.7, SD = 0.47 versus mean = 2.9, SD
=0.72). In addition, all encodings in PieceStack were positively
rated, with clustering (mean = 4.7, SD = 0.47) and decomposition
(mean= 4.7, SD = 0.57) being the most preferred ones and
brushing (mean = 4.25, SD = 1.02) the least. Glyph was rated
4.5 on average with SD = 0.61.

To further understand what caused these statistical and sub-
jective differences, we analyzed the approaches users chose to

solve the tasks. For the benchmark system, users’ exploration
processes were mostly identical. They would repeatedly reorder
and stack the others on the layer of interest to compare it with the
aggregation. Meanwhile, the usage patterns of PieceStack varied
more due to the extra cognitive load caused by the richer visual
encodings. For example, only 12 users managed to take advantage
of the glyphs (supposedly providing enough information) in T[I|
and T[] and 17 in T[3 and TH] Others either chose to directly
observe the cluster height at each time point (one for T[I] and
TP), or decomposed a whole cluster to compare its shape with the
dashed line. In their self-reflections, three users felt that though ad-
mittedly the stacked graph was not expressive enough for the tasks,
the information in PieceStack was, by contrast, overwhelming.
They would need more time to get familiar with the complicated
encodings and sometimes would still go with direct observation
or decomposition. Only when encountering more difficult tasks
TB]and TH] they would try to consider the best approach possible
and to turn to the glyphs. For the rest who did not use glyphs
in the whole process, they reported that they were attracted by
the clustering results, which alleviated the baseline distortion and
reduced the number of layers they must consider, and therefore
ignored the glyphs. Despite the complexity, all the users found
some approaches, though not necessarily the most ideal ones, that
could make the comparisons among layers and aggregations more
intuitive and less time consuming with PieceStack.

1.5 400 Time spent ™= Benchmark

% PieceStack
300t £
1 =
200
05 100
0
0 -100
T1 T2 T3 T4 T5 Tasks T1 T2 T3 T4 T5 Tasks

Fig. 14. Violin plot and error bars for the comparisons between the
accuracy and efficiency of users completing tasks with two systems.
The p-value for their accuracy differences are 0.165, 0.010, 1.621- 1074,
0.001, 0.066 for T[T|to T/5| respectively, and the ones for the time spent
are 3.135-1074,9.135- 1079, 3.003 - 1079, 1.203- 1073, 1.568 - 107>.

Overall, the users preferred our system since it provided an
overview that could brief them with the general characteristics of
stacked graphs and implemented interactions that allowed them to
target some parts with potential patterns. For instance, they agreed
that the glyphs and cluster colors quantified the comparisons
clearly. By contrast, the classical system only left them to explore
blindly. The users further made some valuable points regarding
of the clustering results’ correctness and the intuitiveness of
PieceStack. Four users felt when the number of layers reached
the scale of hundreds or thousands, stacking them together would
compress the layer so greatly that no information left except the
aggregated values. In that sense, grouping layers into a number
of clusters reasonable enough for display would require a coarser
granularity process, and the similarity of layers in the same cluster
could be questionable. Therefore, besides the general guideline
from the initial clustering result, they recommended to let the users
decide the time intervals for more precise and reliable clustering.

9 DiISCUSSION

PieceStack is designed to uncover the rich implications of tem-
poral data in stacked graphs. To help users with some common
but important tasks, the basic visual settings of stacked graphs
are altered and several new elements are added to improve the

9

expressiveness of traditional stacked graphs. The case studies and
user study confirm that our system can effectively reveal deep
relations among layers and the overall shape.

Compared with other time series visualization such as line
charts or small multiples, ours enhances the comparison between
layers and aggregations. First, neither of the aforementioned meth-
ods encode the aggregated value. Even if the summation is further
appended, they are still not suitable for finding the causalities
between layers and the aggregation: the overlaid line chart with
large line collections suffers greatly from the occlusion issue, and
the comparisons between the aggregation and individual lines (i.e.,
layers in stacked graphs) are not intuitive. As for small multiples,
since every layer is drawn in an independent view, understanding
the cause of an aggregation will require the users to go through
every view and understand each layer’s contribution individually,
which would be cumbersome.

Although useful and effective, PieceStack has some design
limitations. First, even if PieceStack is theoretically capable of
processing all types of time series data, it prefers those with
more apparent similarities and differences. If most layers evolve
uniquely and randomly, the clustering algorithm is likely to declare
many noises. In this situation, our system may not work better
than traditional stacked graphs, where the layers are colored
distinguishably. This can be alleviated by adjusting some detailed
steps, such as normalization and distance calculation, to cater
to the features of a specific dataset. Besides, the decomposition
visualization may become less clear when the extracted layers
are not comparable to the overall aggregation. In our design, the
dashed lines and extracted layers are located in the same scale to
aid comparison. However, if the layers are too small, they will be
perceptually too flat for users to recognize features. To solve this,
non-linear scaling or fisheye interactions can be adopted to help
users observe detailed layer shapes.

10 CONCLUSION AND FUTURE WORK

In this paper, we propose PieceStack, an interactive visual system
designed to help users understand the formation of stacked graphs.
First, we derive a set of design requirements to address some
empirically categorized questions concerning the relations among
layers and the aggregation. Guided by these requirements, a new
algorithm is proposed to discover partial similarities between
temporal sequences and to support our visual design. Based
on stacked graphs, our visualization provides a comprehensive
method to help users analyze and evaluate how layers contribute
to the overall shape. Case studies and a user study exemplify
the convenience and effectiveness of PieceStack for understanding
individual and aggregated patterns of temporal sequences. In the
future, we aim to adjust the clustering algorithm with time series
data from various fields, and to increase its capability to reveal data
patterns in different forms. We will also further implement zoom
operations to help evaluate thin layers and improve the scalability.
Furthermore, we plan to customize the exploration intervals and
enable users to choose the time interval they would like to further
partition, cluster, and visualize to glean detailed local patterns.

ACKNOWLEDGMENTS

We gratefully thank all the participants for their feedbacks during
the user study, and the anonymous reviewers for their valuable and
constructive comments.

REFERENCES

(1]

(2]

(3]

[4]

[3]

(6]

(71

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

[21]

[22]

(23]

[24]

C. Abraham, P.-A. Cornillon, E. Matzner-Lgber, and N. Molinari. Un-
supervised curve clustering using b-splines. Scandinavian journal of
statistics, 30(3):581-595, 2003.

D. Baur, B. Lee, and S. Carpendale. Touchwave: kinetic multi-touch
manipulation for hierarchical stacked graphs. In O. Shaer, C. Shen, M. R.
Morris, and M. S. Horn, editors, ITS, pages 255-264. ACM, 2012.

S. Bruckner and T. Moller. Result-driven exploration of simulation
parameter spaces for visual effects design. Visualization and Computer
Graphics, IEEE Transactions on, 16(6):1468-1476, 2010.

L. Byron and M. Wattenberg. Stacked graphs—geometry & aesthetics. Vi-
sualization and Computer Graphics, IEEE Transactions on, 14(6):1245—
1252, 2008.

N. Cao, L. Lu, Y.-R. Lin, F. Wang, and Z. Wen. Socialhelix: visual anal-
ysis of sentiment divergence in social media. Journal of Visualization,
18(2):221-235, 2015.

K. W. Church and P. Hanks. Word association norms, mutual informa-
tion, and lexicography. Computational linguistics, 16(1):22-29, 1990.
W. Cui, S. Liu, L. Tan, C. Shi, Y. Song, Z. Gao, H. Qu, and X. Tong.
Textflow: Towards better understanding of evolving topics in text. Visu-
alization and Computer Graphics, IEEE Transactions on, 17(12):2412—
2421, 2011.

M. Dork, D. Gruen, C. Williamson, and S. Carpendale. A visual
backchannel for large-scale events. Visualization and Computer Graph-
ics, IEEE Transactions on, 16(6):1129-1138, 2010.

D. H. Douglas and T. K. Peucker. Algorithms for the reduction of the
number of points required to represent a digitized line or its caricature.
Cartographica: The International Journal for Geographic Information
and Geovisualization, 10(2):112-122, 1973.
S. Frohwirth-Schnatter and S. Kaufmann.
multiple time series.
26(1):78-89, 2008.

S. J. Gaffney. Probabilistic curve-aligned clustering and prediction with
regression mixture models. PhD thesis, University of California, Irvine,
2004.

A. Gisbrecht. Time series clustering. ICOLE 2007, Lessach, Austria,
page 48.

D. Goldin, R. Mardales, and G. Nagy. In search of meaning for
time series subsequence clustering: matching algorithms based on a
new distance measure. In Proceedings of the 15th ACM international
conference on Information and knowledge management, pages 347-356.
ACM, 2006.

S. Hangal, M. S. Lam, and J. Heer. Muse: Reviving memories using
email archives. In Proceedings of the 24th annual ACM symposium on
User interface software and technology, pages 75-84. ACM, 2011.

S. Havre, E. Hetzler, P. Whitney, and L. Nowell. Themeriver: Visualizing
thematic changes in large document collections. Visualization and
Computer Graphics, IEEE Transactions on, 8(1):9-20, 2002.

J. Heer, F. B. Viégas, and M. Wattenberg. Voyagers and voyeurs:
Supporting asynchronous collaborative visualization. Communications
of the ACM, 52(1):87-97, 2009.

A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM
computing surveys (CSUR), 31(3):264-323, 1999.

E. Keogh and J. Lin. Clustering of time-series subsequences is mean-
ingless: implications for previous and future research. Knowledge and
information systems, 8(2):154-177, 2005.

J.-G. Lee, J. Han, and K.-Y. Whang. Trajectory clustering: a partition-
and-group framework. In Proceedings of the 2007 ACM SIGMOD
international conference on Management of data, pages 593-604. ACM,
2007.

T. W. Liao. Clustering of time series data: a survey. Pattern recognition,
38(11):1857-1874, 2005.

S. Liu, M. X. Zhou, S. Pan, Y. Song, W. Qian, W. Cai, and X. Lian. Tiara:
Interactive, topic-based visual text summarization and analysis. ACM
Transactions on Intelligent Systems and Technology (TIST), 3(2):25,
2012.

B. Morris and M. Trivedi. Learning trajectory patterns by clustering:
Experimental studies and comparative evaluation. In Computer Vision
and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages
312-319. IEEE, 2009.

M. Miiller. Dynamic time warping. Information retrieval for music and
motion, pages 69-84, 2007.

C. S. Mller-Levet, F. Klawonn, K.-H. Cho, and O. Wolkenhauer. Fuzzy
clustering of short time-series and unevenly distributed sampling points.
In M. R. Berthold, H.-J. Lenz, E. Bradley, R. Kruse, and C. Borgelt,
editors, /DA, volume 2810 of Lecture Notes in Computer Science, pages
330-340. Springer, 2003.

Model-based clustering of
Journal of Business & Economic Statistics,

10
[25] T. Pang-Ning, M. Steinbach, V. Kumar, et al. Introduction to data mining.
In Library of Congress, page 74, 2006.
W. Playfair. Commercial and political atlas and statistical breviary, 1786.
C. A. Ratanamahatana, J. Lin, D. Gunopulos, E. J. Keogh, M. Vlachos,
and G. Das. Mining time series data. In Data Mining and Knowledge
Discovery Handbook, 2nd ed., pages 1049-1077. 2010.
C. Shi, W. Cui, S. Liu, P. Xu, W. Chen, and H. Qu. Rankexplorer:
Visualization of ranking changes in large time series data. Visualization
and Computer Graphics, IEEE Transactions on, 18(12):2669-2678,
2012.
C. Shi, Y. Wu, S. Liu, H. Zhou, and H. Qu. LoyalTracker: Visualizing
loyalty dynamics in search engines. IEEE Transactions on Visualization
and Computer Graphics (Proceedings of IEEE VAST 2014, 20(12), 2014.
A. Singhal and D. E. Seborg. Clustering multivariate time-series data.
Journal of chemometrics, 19(8):427-438, 2005.
G. Sun, Y. Wu, S. Liu, T.-Q. Peng, J. J. Zhu, and R. Liang. Evoriver:
Visual analysis of topic coopetition on social media. Visualization and
Computer Graphics, IEEE Transactions on, 20(12):1753-1762, 2014.
Y. Tanahashi and K.-L. Ma. Design considerations for optimizing
storyline visualizations. Visualization and Computer Graphics, IEEE
Transactions on, 18(12):2679-2688, 2012.
F. B. Viegas, M. Wattenberg, F. Van Ham, J. Kriss, and M. McKeon.
Manyeyes: a site for visualization at internet scale. Visualization and
Computer Graphics, IEEE Transactions on, 13(6):1121-1128, 2007.
X. Wang, K. Smith, and R. Hyndman. Characteristic-based clustering for
time series data. Data Mining and Knowledge Discovery, 13(3):335-364,
2006.
Y. Xiong and D.-Y. Yeung. Time series clustering with arma mixtures.
Pattern Recognition, 37(8):1675-1689, 2004.
H. Zhou, P. Xu, and H. Qu. Visualization of bipartite relations between
graphs and sets. Journal of Visualization, 18(2):159-172, 2015.

[26]
[27]

[28]

[29]

[30]

(31]

[32]

(33]

[34]

[35]

[36]

Tongshuang WU is currently an undergraduate student in the De-
partment of Computer Science and Engineering at the Hong Kong
University of Science and Technology (HKUST). Her research interests
are in information visualization, visual analytics, and human-computer
interaction, and online education. For more information, please visit
http://tongshuang.me/

Yingcai WU is an assistant professor at the State Key Lab of CAD
& CG, Zhejiang University, Hangzhou, China. He received his Ph.D.
degree in Computer Science from the Hong Kong University of Science
and Technology (HKUST). Prior to his current position, Yingcai Wu was
a researcher at the Internet Graphics Group in Microsoft Research
Asia, Beijing, China. His primary research interests lie in visual be-
havior analytics, visual analytics of social media, visual text analytics,
uncertainty-aware visual analytics, and information visualization. For
more information, please visit http://www.ycwu.org

Conglei SHI is a postdoctoral research fellow in IBM T.J. Watson Re-
search Center. He received his Ph.D. degree in Computer Science from
the Hong Kong University of Science and Technology (HKUST) and his
B.Sc. degree in Shanghai Jiao Tong University in major of Computer
Science. His main research interests are information visualization, vi-
sual analytics , and human computer interaction. For more information,
please visit http://www.conglei.org/

Huamin QU is a professor in the Department of Computer Science and
Engineering at the Hong Kong University of Science and Technology.
His main research interests are in visualization and computer graphics,
with focuses on urban informatics, social network analysis, e-learning,
and text visualization. He obtained a BS in Mathematics from Xi'an
Jiaotong University, China, an MS and a PhD in Computer Science
from the Stony Brook University. For more information, please visit
http://www.huamin.org

Weiwei CUI Weiwei Cui is a Lead Researcher at Microsoft Research
Asia, China. He received his PhD in Computer Science and Engineering
from the Hong Kong University of Science and Technology and his
BS in Computer Science and Technology from Tsinghua University,
China. His primary research interests lie in visualization, with focuses
on text, graph, and social media. For more information, please visit
http://research.microsoft.com/en-us/um/people/weiweicu/

	Introduction
	Related Work
	Stacked Graph
	Clustering Algorithm

	Design Consideration
	Problem Analysis
	Requirement Analysis

	System Overview
	Partial Time Series Clustering
	Visual Design
	Stacked Graph Constructed with Clusters
	Glyphs Encoding Contributions
	Interactions

	Case Study
	Unemployed US Workers by Industry
	Twitter Data about Ebola

	User Study
	Discussion
	Conclusion and Future Work
	References
	Biographies
	Tongshuang WU
	Yingcai WU
	Conglei SHI
	Huamin QU
	Weiwei CUI

