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ABSTRACT
User Interface/eXperience (UI/UX) significantly affects the
lifetime of any software program, particularly mobile apps.
A bad UX can undermine the success of a mobile app even if
that app enables sophisticated capabilities. A good UX, how-
ever, needs to be supported of a highly functional and user
friendly UI design. In spite of the importance of building
mobile apps based on solid UI designs, UI discrepancies—
inconsistencies between UI design and implementation—are
among the most numerous and expensive defects encoun-
tered during testing. This paper presents UI X-RAY, an in-
teractive UI testing system that integrates computer-vision
methods to facilitate the correction of UI discrepancies—
such as inconsistent positions, sizes and colors of objects
and fonts. Using UI X-RAY does not require any program-
ming experience; therefore, UI X-RAY can be used even
by non-programmers—particularly designers—which signif-
icantly reduces the overhead involved in writing tests. With
the feature of interactive interface, UI testers can quickly gen-
erate defect reports and revision instructions—which would
otherwise be done manually. We verified our UI X-RAY on 4
developed mobile apps of which the entire development his-
tory was saved. UI X-RAY achieved a 99.03% true-positive
rate, which significantly surpassed the 20.92% true-positive
rate obtained via manual analysis. Furthermore, evaluat-
ing the results of our automated analysis can be completed
quickly (< 1 minute per view on average) compared to hours
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of manual work required by UI testers. On the other hand, UI
X-RAY received the appreciations from skilled designers and
UI X-RAY improves their current work flow to generate UI
defect reports and revision instructions. The proposed sys-
tem, UI X-RAY, presented in this paper has recently become
part of a commercial product.
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INTRODUCTION
In the last few years, mobile computing has changed the way
we interact with others and the world around us. This may
be largely attributed to the application developer community
and the creative way mobile applications help us achieve our
daily tasks. As of June 2016, there are over 2 million An-
droid and iOS apps available for download. With such a
crowded marketplace, and an average usage length of around
1 minute, mobile applications will succeed only with a high-
fidelity user interface and a strong design. Success typically
requires a skilled design team that is differentiated from the
engineering team developing the app. The engineering team
must independently adhere to the UI design; design correct-
ness is essential in mobile application development process.

A conventional UI testing flow in application development is
illustrated in Figure 1, which is intensively manual. Devel-
opers start application development based on UI designs that
designers created according to clients’ requirements; at the
same time, UI testers and designers define acceptance crite-
ria for developers to test the functionality of applications and
also describe what the UI implementations should be accord-
ing to different interactions. It is easy for developers to assure
the correctness of functionalities via unit tests, and there is al-
ways a numeric ground truth as a reference; however, UI veri-
fication is more subjective. Thus, it is usually done by skilled



UI testers and designers. As a result, developers might create
correct functionality but inadvertently produce UI discrepan-
cies. During testing, UI testers and designers prepare a UI
defect report, which includes the locations of discrepancies
along with revision instructions. This phase is usually ex-
tremely time consuming, since UI testers and designers need
to manually label and accurately describe inconsistencies to
communicate to developers where the defects are located and
how to fix them. This process results in a communication
latency between testers and developers, which significantly
slows down application development. Furthermore, this pro-
cess requires numerous iterations since UI testers and design-
ers might not be able to find all the UI discrepancies at once
by just eyeballing, and developers might even create more
UI discrepancies during revision since not all defects are re-
solved for one view at the same time. UI discrepancies also
take place when apps are upgraded, especially when the up-
grade adds more functionality and new UI views. A robust
regression UI testing is also time-consuming.

It should be noticed that developers have limited knowledge
when it comes to fixing UI defects, and they might need to
blindly try distinct strategies to fit the UI design requirements.
In addition, there is no established toolkit like unit test to ver-
ify the UI implementations systematically. Thus, developers
might accidentally commit new UI defects even while trying
to fix existing ones. Also, UI testers and designers need to
manually find UI discrepancies and generate UI defect re-
ports for developers to guide them how to fix UI discrep-
ancies. Both tasks are labor-intensive and time-consuming,
without mentioning that the UI defect reports manually gen-
erated in the process above may be vague and not clearly
guide developers. Finally, the smoothness of app develop-
ment is also a concern, because UI testers might not be able
to work on resolving UI discrepancies right after develop-
ers commit their codes. This causes developers to become
idle between the time they commit their code and the time
in which they receive revision instructions. The challenges
we have just described become even more prominent when
the app-development team is geographically distributed—a
global trend in industry. In such cases, text descriptions are
not suitable for resolving UI discrepancies.

In this paper, we propose UI X-RAY, an interactive UI test-
ing system based on computer vision which unifies the UI
testing environment for UI developers, testers and designers
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Figure 1. Conventional UI testing flow. Testers and designers need to
manually interact with the app to find out UI discrepancies. Developers
need to wait for the UI revision report before revising the app.

to align UI testing methods in finding and reporting UI dis-
crepancies. A capable detection algorithm is not enough for
resolving UI design discrepancies since many decisions are
still made be experts for subjective evaluations; therefore, we
integrated computer-vision algorithm with friendly interface
design to achieve an intelligent and interactive UI testing sys-
tem. UI X-RAY provides advantages from two aspects: (1)
Developers have the capability to locally resolve as many UI
discrepancies as possible thanks to the underlying computer-
vision analysis, and they can also give feedback to UI testers
and designers about the limitation of UI visualization in appli-
cations; and (2) UI testers and designers can quickly identify
the remaining UI discrepancies based on the UI testing sys-
tem and feedback from developers, and then provide revision
instructions according to their expertise. Case 1 of Figure 2
illustrates the use case for developers. Developers can resolve
the defects right away by utilizing the defect report produced
by UI X-RAY. They can indeed fix as many discrepancies as
possible before submitting their code. In parallel, UI testers
and designers can enhance the report based on their expertise
to guide developers to resolve those defects that might not be
fixed by developers themselves, which is illustrated in case 2
of Figure 2.

This paper makes the following novel contributions:

1. We propose UI X-RAY, an interactive UI testing system
that bridges the knowledge of UI testers, designers and de-
velopers, gives developers the power to find and fix dis-
crepancies by themselves, and reduces the number of iter-
ations necessary to fix discrepancies.

2. UI X-RAY is friendly to use for different types of users—
UI testers, designers and designers.

3. UI X-RAY is based on a novel computer-vision algo-
rithm to present UI discrepancies. UI discrepancies can be
quickly detected and verified. In addition, UI X-RAY pro-
vides a friendly way for testers and designers to generate
defect reports and revision instructions.

4. UI X-RAY’s computer-vision analysis hierarchically re-
veals UI discrepancies, from a coarse-grained level to a
fine-grained level. Our method does not just indicate the
discrepancies but also suggests how to fix them.
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Figure 2. Improved UI testing flow based on UI X-RAY. Case 1: Devel-
opers are able to verify UI discrepancies by themselves, which shortens
the time required to fix UI defects. Case 2: UI testers and designers can
reuse the report created by developers to enhance UI revision reports.



5. UI X-RAY leverages the complexity of computer-vision
analysis and the characteristics of UI design. Therefore,
UI X-RAY can detect UI discrepancies efficiently and ac-
curately, with a 99.03% true-positive rate that significantly
surpassed the 20.92% true-positive rate obtained via man-
ual analysis.

6. UI X-RAY has recently become part of a commercial
product.

The remainder of this paper is organized as follows: we dif-
ferentiate our novelty with related work. We then present
the details of UI X-RAY along with its underlying computer-
vision analysis and interactive interface design. We provide
experimental results to justify the performance of UI X-RAY.
Finally, we conclude the paper.

RELATED WORKS ON UI TESTING
This section describes related work in UI testing in compar-
ison to UI X-RAY. In general, most of the research work in
the field of UI testing is only about the detection algorithm
and does not include a friendly interface to assist end users to
easily interact with the results reported.

Fighting Layout Bugs [4] only evaluates the layout mismatch
but does not identify different error types; on the contrary,
UI X-RAY can categorize errors related to position, size, and
color. Seleuium [12] is an automated testing tool for UI vi-
sualization of Web application. It requires a lot of user-input
information to test the discrepancies. In contrast, UI X-RAY
can automatically identify discrepancies based on computer-
vision-based analysis.

Chang et al. [1] propose a Graphic User Interface (GUI) test-
ing system with computer vision. They propose an element-
level verification by examining the presence of graphic ele-
ments for corresponding behaviors. Nonetheless, their results
can only check whether or not objects are present when the
specific action is performed, and then raise a flag to indicate
whether something is wrong. but fail to precisely identify
where the problem is. Our work subsumes their capability
since we check appearance of all elements, but in addition
to their work, ours can locate UI discrepancies and provide
revision insights.

Facebook [3, 11] has produced an open-source framework on
element-level comparison to indicate UI difference/mismatch
of elements from reference UI design, such as an icon, an
image, and a button. Their work has been integrated in iOS
and Android as a unit test system for development. Unfortu-
nately, this tool requires deep knowledge of source code as
well as programming experience, which decreases the usabil-
ity by developers and UI testers. Furthermore, the Facebook
work only compares single elements but ignores the relation-
ship among elements, such as the relative positions of the var-
ious elements. Our work covers their capability and in addi-
tion suggests how to fix discrepancies in size, position, and
color of elements.

Ligman et al. [6] propose a UI design-validation system based
on application object-tree representation, screenshot, and ob-
ject data. It uses view hierarchy and metadata of each view
obtained by walking through source codes, and screenshots to

validate the UI components against the design specification.
Their results only check the correctness of individual UI ele-
ments, similar to the Facebook work discussed above; if a UI
element appears in the wrong position, it might still pass the
test as long as the UI element is correct. Furthermore, their
work does not take into account background colors. Also,
when an error occurs, there is no insight for developers to fix
UI defects. Our method is a superset of their work because it
compares not only UI elements, but also relationship between
them. In addition, UI X-RAY also provides precise insights
for resolving UI defects.

Mahajan et al. [8, 9] present a failure detection and localiza-
tion of HTML errors, which utilizes HTML metadata to lo-
calize image differences and then report them to developers.
Conversely, our approach detects, localizes, and measures de-
fects only based on images. The presence of metadata would
certainly be helpful, although not required. In addition, com-
pared to UI X-RAY, which can measure the difference with
pixel-level accuracy, they just produce coarse-grained results
since they group defects into multiple clusters, which loses
the capability for precise discrepancy measurement.

SYSTEM DESIGN
UI X-RAY is an interactive system that verifies UI implemen-
tations against the corresponding UI specifications by utiliz-
ing computer-vision algorithms. In this section, we first give
an overview on how the system is designed, and then explain
the algorithms in details.

Overview of UI X-RAY
Figure 3 shows UI X-RAY’s workflow, which includes three
modules: image retrieval, UI discrepancy identification, and
an interactive report generation. For each UI view, the image-
retrieval module is designed to automatically select the spec-
ification (the view drawn by UI designers) corresponding
to the implementation (the view coded by the programmer).
Since there are usually hundreds of design specifications per
application, this module is essential because it automates an
otherwise time-consuming activity. Having selected a specifi-
cation/implementation pair, the UI discrepancy-identification
module is used to indicate and measure any discrepancy
through computer-vision-based analysis. The output from
this module is used by the interactive report-generation mod-
ule. This module provides a friendly interface, enabling end
users to inspect, modify, and comment all the differences de-
tected by the UI discrepancy-identification module. At this
stage, a comprehensive and accurate UI defect report can be
generated as a guidance to revise the implementation.

Image-retrieval Module
We designed and implemented a fast and efficient template-
matching algorithm to find the most similar specification [5]
for a given implementation. UI designs for mobile apps are
usually more easily differentiable than natural images, which
are composed of a variety of components and subject to light-
ing conditions, viewing angles, etc. Therefore, the intuition
behind the design of this module is that a very complicated
image retrieval algorithm is unnecessary. Traditionally, tem-
plate matching is used to find the location of a subimage



Figure 3. Workflow of proposed UI testing system, UI X-RAY

within an image, in which the detected subimage is the one
most similar to the template, and the similarity is usually mea-
sured by the correlation. However, in our case, we consider
the entire implementation as the template, and all specifica-
tions as a reference pool. In order to find the specification
most similar to the implementation, we remodeled template
matching by calculating the sum of absolute difference of the
intensity value of every pixel in an image, and its expression
is illustrated as Eq. 1:

Score(n) =
∑
i,j

|SpecI(n, i, j)− ImplI(i, j)|,

for 0 ≤ n < N

(1)

where Score(n) is the matching score of the implementation
to the n-th specification, SpecI(n, i, j) is the intensity I of
pixel at position (i, j) in the n-th specification, ImplI(i, j)
is the intensity I of pixel at position (i, j) in the implemen-
tation, and N is total number of specifications. Then, the
specification with the smallest score will be retrieved. The
next step is for the UI discrepancy-identification module to
identify and measure the UI inconsistencies at the image and
subimage levels.

UI Discrepancy-Identification Module
This section describes UI X-RAY’s computer-vision-based
analysis, while Figure 4 displays an example. There are two
stages to identify and measure UI discrepancies. First, we
identify them at the image level to form a big picture and
investigate suspicious regions; then, we decompose an image
into subimages by detecting corresponding bounding boxes to
find details and provide revision insights to fix defects, such
as size, position and color. Thus, users can hierarchically
identify issues from a coarse-grained view to a fine-grained
view instead of being overwhelmed by plentiful information
at the same time. The following two subsections describe the
image-level and subimage-level analyses respectively.

Image-Level Analysis
Through image-level analysis, we identify UI discrepancies
in three different formats; each one reports discrepancies
from different perspectives: (I) binary difference, (II) inten-
sity variation, and (III) blended image—as shown on the top
of Figure 4.

1. Binary difference: This image reports whether or not the
pixels in colocated positions in the implementation and the

Image-level analysis

Subimage-level (bounding box) analysis

Implementation

Retrieved spec.

Cropped samples

Position and size (X, Y, W, H): 

Spec.: (329, 546, 100, 94)

Impl.:  (328, 545, 97, 91)

Detected FG/BG Color

(RGB hexcode): 

Spec.: (FG: 0xE17901,

            BG: 0xFFFFFF)

Impl.: (FG: 0xE17901,

           BG: 0xFFFFFF)

Binary Difference Intensity Variation Blended Image

Bounding boxes on 

blended image

Position ans size (X, Y, W, H):

Spec.: (32, 771, 161, 25)

Impl.:  (27, 769, 157, 25)

Detected FG/BG color

(RGB hex code):

Spec.: (FG: 0x6D6d6D, 

            BG: 0xEBEBED)

Impl.: (FG: 0x6D6D6D, 

           BG: 0xEFEFF4)

Figure 4. Details of UI X-RAY’s UI discrepancy-identification module,
including both image-level and subimage-level (bounding-box) analysis.
At the image level, three different visual representations are shown to
identify locations of discrepancies. At the subimage level, all UI ele-
ments are detected and individual tests on each box are performed to ex-
amine discrepancies at a fine-grained level. Green boxes denote passed
tests and red boxes failed tests. Each bounding box is a cropped area
of the blended image in which the green box is the specification and
the red box with dashed line is the implementation. Furthermore, we
measure bounding box information of each cropped area as metadata,
including the X and Y coordinates of the top-left corner of the bound-
ing box, width W , height H , and the associated foreground (FG) and
background (BG) colors.

corresponding n-th specification previously retrieved are
identical. A white pixel denotes a mismatch, a black pixel
a match. Equation 2 illustrates how the binary difference
image is derived.

B(n, i, j) =

{
255, SpecI(n, i, j) 6= ImplI(i, j)

0, otherwise
(2)

where B(n, i, j) is the pixel value of binary difference im-
age at position (i, j). Thus, users can easily delineate the
suspicious regions and remove false-alarm regions. For ex-
ample, in Figure 4, the region in the middle is a suspicious
area (circled by a red-dashed box), which indicates a mis-
match in both text and background.

2. Intensity variation: This image indicates differences be-
tween the implementation and the n-th retrieved specifi-
cation, where each difference is displayed proportionally
to the difference of pixel intensity. To derive the intensity



variation map, we apply Eq. 3 on every pixel pair:

I(n, i, j) = |SpecI(i, j)− ImplI(i, j)| (3)

where I(n, i, j) is the value of intensity variation for pixel
at position (i, j) when comparing the implementation to
the n-th retrieved specification. The intensity-difference
image is likely to reveal more details compared to the
binary-difference one. Even though users can quickly
spot differences using the binary approach, the binary-
difference image may hide important information. Further-
more, the intensity-difference image may help us distin-
guish defect types. For example, for the same white region
in the binary-difference image of Figure 5, it is only by ex-
amining the intensity-variation image that we learn that the
difference comes not only from the background color but
also from the text misalighment.

3. Blended image: This image blends the specification and
the implementation into one single image through alpha
blending. The specification weighs more than the imple-
mentation in order to guide the user to distinguish the spec-
ification from the implementation. For example, the word
“EQUIPMENT” in the implementation is shifted to the left
compared to the specification. We can fix this by moving
the text box to right by the correct number of pixels. The
blended image can be derived by Eq. 4:

Blend(n, i, j) = αSpec(n, i, j) + (1− α)Impl(i, j) (4)

where Blend(n, i, j) is the value of the pixel at position
(i, j) in the image that blends the implementation with the
n-th specification, Spec(n, i, j) is the n-th retrieved speci-
fication with RGB components and Impl(i, j) is the imple-
mentation with RGB components. We set α to 0.7 in our
experiments.

Subimage-Level (Bounding Box) Analysis
The image-level analysis identifies areas of discrepancy. The
subimage level measures those discrepancies and gives users
insights on how to fix them.

First, UI X-RAY decomposes the whole image into multiple
subimages by detecting salient regions. Each region is sur-
rounded by a rectangular bounding box; in mobile applica-
tions, salient regions typically are text fields, objects, tables,
and buttons. Each bounding box is associated with the X and
Y coordinates of the top-left corner, as well as width W and
height H . Due to natural UI design in mobile applications,
a bounding box, which surrounds a fine-grained UI element,

(a) Binary Difference

(b) Intensity Variation

(c) Blended Image

Figure 5. Cropped patches of red rectangular in Figure 4

usually contains only two major colors, foreground and back-
ground. UI X-RAY can identify the foreground and back-
ground colors of a bounding box. Foreground colors have
different meanings depending on the bounding box type. For
example, in a text bounding box the foreground color is the
font color, while in an object bounding box the foreground
color is the color of the main object. Furthermore, the height
of a text bounding box can be also used to infer the font size.
After having independently identified bounding boxes in the
specification and the implementation, we pair them based on
their positions; therefore, we measure their dissimilarity with
pixel-level accuracy.

A fundamental characteristic of mobile UIs is the fact that
in mobile applications, the regions of interest are character-
ized by high contrasts. This allows UI X-RAY to apply edge
detection to accurately identify salient points, such as edges
of texts and icons. Afterwards, morphological methods, dila-
tion and erosion, are used to connect sparse salient points in
forming connected components. Thus, we can delineate those
connected components by bounding boxes to obtain subim-
ages [10]. Each detected bounding box usually encloses con-
tent of a single type, such as a text field or an icon, as shown
in the green and red boxes at the bottom of Figure 4.

We can also detect foreground and background colors of each
bounding box based on k-means clustering [7] since each
bounding box, as we just mentioned, encloses contents of a
single type, which results in the color contrast to be clear. For
example, contrast of text and background is high in order to
make users read text more easily. This allows us to choose
the two most frequent color components in each cluster to
be foreground and background colors, respectively. There-
fore, we are able to report UI discrepancies on colors of font,
icons, and backgrounds.

To correlate bounding boxes in both images, we deploy the
Non-Maximum Suppression (NMS) method to retrieve the
pairs of the most correlated subimages in two different im-
ages. NMS measures the ratio of intersected area over union
area of two bounding boxes as defined in Eq. 5. A higher
NMS value denotes higher bounding box similarity.

NMS i = argmax
j

Areabbox i∩bboxj

Areabbox i∪bboxj

(5)

where bbox i is the i-th bounding box in the specification and
bbox j is the j-th bounding box in the implementation.

We present the above results by superimposing bounding
boxes on the blended image; hence, we are able to find the
discrepancies at both the image and subimage levels concur-
rently. Next, we crop those bounding boxes into individual
subimages, each with its bounding box information, includ-
ing the bounding box’s top-left corner’s X and Y geomet-
rical coordinates, width W , height H , and foreground and
background colors, for both the specification and the imple-
mentation.

Based on this precise discrepancy measurement, developers
are now guided to resolve those defects by comparing the dif-
ference of the information of bounding boxes. For example,



in Figure 4, the exact difference of the phone icon is diffi-
cult to identify by plain eyeballing, but with the aid of the
surrounding bounding box, UI testers and designers can learn
that there is a one-pixel mismatch between the implementa-
tion and the specification in both the X and Y coordinates,
while the implementation’s size is 3 pixels smaller than the
specification in both width W and height H . Furthermore,
in Figure 6, our method also points out the discrepancies in
font and background colors, which are difficult to find manu-
ally. Foreground color discrepancy is used to fix font or icon
color, whereas background color inconsistency indicates that
the color of the entire background was not implemented ac-
cording to the specification. In Figure 6 (a), the font color
discrepancy is easier to find when we enlarge and focus on
the subimage. However, when the inconsistency involves a
piece of whole image or its background, automatically de-
tection and reporting discrepancies is more difficult. In sub-
figure (b) of Figure 6, the cyan color of text “View All” looks
very similar but their hex color codes are different. Figure 6
(c) indicates that the background color is wrong, which is also
related to the discrepancy we found in Figure 5, with the dif-
ference that we have now obtained more insights to fix the
color issue. Font size can be inferred from the height of the
bounding box. For Figure 6, since those applications are ren-
dered at 2× scale, we can infer the font size by dividing the
height by 2. Thus, font sizes of (a), (b), and (c) are 17, 15
and 17, respectively (Some letters exceed the baseline, so we
round down to the integer.).

It may not be realistic to always demand the implementation
to be perfectly identical to the specification. For example, de-
signers might not know particular programming limitations
that cause the specification to become unimplementable. An-
other situation that calls for accepting the implementation
over the specification takes place when the bandwidth of de-
velopers is so tight that slight mismatches must be deemed
to be acceptable. Having attained precise discrepancy mea-
surement, we can set up a tolerance coefficient to report only
severe discrepancies that fall beyond that coefficient. Testers
and designers can tell developers how to adjust the acceptance
criteria by setting the tolerance coefficient accordingly.

Specification Implementation

Position and size (X, Y, W, H): 

Spec.: (17, 1270, 102, 35)

Impl.:  (8, 1270, 101, 35)

Detected FG/BG color (RGB hex code):

Spec.: (FG: 0xE17901, BG: 0x45474A)

Impl.:  (FG: 0xE79333, BG: 0x43464A)

Position and size (X, Y, W, H): 

Spec.: (1834, 409, 178, 30)

Impl.:  (1847, 385, 175, 30)

Detected FG/BG color (RGB hex code):

Spec.: (FG: 0x2F98BF, BG: 0xFFFFFF)

Impl.:  (FG: 0x38A8CB, BG: 0xFFFFFF)

Specification Implementation

Specification Implementation

Position and size (X, Y, W, H): 

Spec.: (17, 1270, 102, 35)

Impl.:  (8, 1270, 101, 35)

Detected FG/BG color (RGB hex code):

Spec.: (FG: 0x6D6D6D, BG: 0xEBEBED)

Impl.:  (FG: 0x6D6D6D, BG: 0xEFEFF4)

(a) (b)

(c)

Figure 6. Three examples of font foreground (FG) and background (BG)
color detection

We provide flexible tolerance setting of bounding boxes in
position, size and color. Two parameter sets are included in
tolerance setting: position tolerance (∆X , ∆Y , ∆W , ∆H),
and color tolerance (∆R, ∆G, ∆B). Figure 7 shows three
different position tolerance settings on (∆X , ∆Y , ∆W , ∆H)
and the corresponding details of each bounding box. No tol-
erance setting is equivalent to the strictest setting, which dis-
allows any mismatch, while a tolerance coefficient of −1 in-
dicates infinite tolerance. Tolerance setting A relaxes the tol-
erance on the Y coordinate and sets it to infinity, while the
other parameters have a coefficient tolerance of 4. Tolerance
setting B completely relaxes both the X and Y coordinates
and just verifies the size of the bounding boxes by imposing
that any mismatch in width and height be smaller than 4 pix-
els. As a result, Figure 7 (a) corresponds to three test failures
because there are three mismatches and no tolerance for any
discrepancy. Figure 7 (b) gets one pass and two failures since
the bounding box in the center fits the tolerance criteria but
two boxes at the sides do not. Finally, Figure 7 (c) passes
all tests because the size difference is 3 pixels but tolerance
is 4 pixels. Similar reasoning can be applied to color tol-
erance. For example, in Figure 6 (a), the background color
is close but slightly different, so we can set color tolerance
(∆R, ∆G, ∆B) to (2, 1, 0) if the background color of the
implementation is acceptable.

This tolerance setting also resolves issues about dynamic
data, since sometimes the examples used in specifications will
be different from real data used in implementations, e.g. The
equipment names of specification and implementation in Fig-
ure 4 are difference; then, the width of detected bounding box
would be different. Thus, by setting ∆W to -1, we can still
validate the height, as well as the X and Y coordinates to
assure that the implementation conforms the specification.

The above verification logic provides the insights to fix dis-
crepancies. We can also extend UI X-RAY to validate the
implementations in regression testing, and test scripts writ-
ten by developers can be reused to assure that existing UIs
do not violate the previous tolerance when adding new UIs or
functionalities.

Interactive Report Generation Module
The detected differences from the aforementioned modules
are not always accurate. For example, by comparing the map
at the top of the specification and implementation images

Position and size (X, Y, W, H): 

Spec.: (584, 546, 100, 94)

Impl.:  (567, 545, 97, 91)

Position and size (X, Y, W, H): 

Spec.: (329, 546, 100, 94)

Impl.:  (328, 545, 97, 91)

Position and size (X, Y, W, H): 

Spec.: (73, 546, 100, 94)

Impl.:  (89, 545, 97, 91)

(c) Tolerance setting B

(b) Tolerance setting A

(d) Details of three bounding boxes

(a) No tolerance setting

Figure 7. Flexible tolerance (∆X , ∆Y , ∆W , ∆H) for examining
bounding boxes. (a) No tolerance setting. (b) Tolerance setting A = (4,
-1, 4, 4). (c) Tolerance setting b = (-1, -1, 4, 4). (d) Details of the bounding
boxes.



in Figure 4, we see a mismatch, which is also reported by
the binary, intensity and blended images. This mismatch is,
however, a false positive. The designer used a map centered
around McDavid’s National Fast Food, while the data dynam-
ically retrieved during testing brought up an implementation
with a map centered around McLeod’s National Fast Food.
This mismatch can safely be ignored because it is normal
for the app to work on dynamically generated data, which
may not correspond to the sample data used during design.
This shows that, in some cases, additional comments may be
needed for developers to better understand how to revise an
implementation correctly. The interactive report-generation
module fills the gap between the result generated by the UI
discrepancy-identification module and the final UI defect re-
port.

Designing this module was an iterative process. We collabo-
rated with several designers and had multiple rounds of meet-
ings with them to better understand their needs for such tool
to be useful. Below is the summary of the requirements we
gathered:

• Order matters. Since a considerable number of differ-
ences will be detected, it is necessary to present all of them
in an organized manner.
• Better comparison is needed. End users need to verify

all the detected differences between an implementation and
the corresponding specification. In order to speed up this
process, a better comparison approach is needed for them
to quickly and accurately conducting comparisons between
two images.
• Modification and commenting is a must. As mentioned

before, it is not guaranteed that the differences detected
automatically are always correct—false positives are pos-
sible. Therefore, manual modification of the differences
is necessary. Furthermore, in order to give detailed and
precise instructions on how to revise the implementation,
commenting on any detected difference is also a necessary
feature.

Guided by these requirements, we developed a Web ap-
plication, shown in Figure 8. The application consists of
two views: a table view listing all the differences, and a
sliding view providing a straightforward in-situ compari-
son of the detected differences. For each bounding box,
we compute four type of discrepancies: position (X,Y ),
size (W,H), foreground color FG(R,G,B) and background
color BG(R,G,B). A bounding box’s severity is computed
as the sum of problems associated with it. UI X-RAY lists
the discrepancies in the table view ordered by severity. Fur-
thermore, for each discrepancy, the error types and the cor-
responding thumbnail are provided in the table for users to
quickly identify the position of that discrepancy and its sever-
ity. The bounding boxes—the one detected in the specifica-
tion, the corresponding one detected in the implementation,
and the union of the two—are rendered in the sliding view to-
gether with the images of original implementation and speci-
fication, as shown in Figure 9. The two images will be over-
laid and the divider (in blue color) is used to distinguish the
implementation with specification. For example in Figure 9

(b), the divider is dragged in the middle, where the left-hand
side shows the implementation and the right-hand side the
specification. In this way, users can easily compare the two
corresponding regions. The union bounding box will be ren-
dered as a rectangle with no fill color but with a gray border
line. For the other two bounding boxes, they will be only
rendered as a pink rectangle on the opposite images (i.e., the
bounding box detected from the image of the implementation
will be rendered on the image of the specification, and vice
versa). This rendering strategy enables users to quickly iden-
tify the difference between the implementation and specifica-
tion without directly comparing both images. Modification
and commenting are supported by selecting a specific differ-
ence either through the table view or the sliding view.

Figure 8. Screen shot of the interactive user interface. The Web applica-
tion contains a table view and a sliding view. For each difference, users
can either remove it or add more comments through a pop-up window.

Figure 9. The illustration of sliding interaction. (a) the image from the
specification; (b) the mixture of images from the implementation and
specification; and (c) the image from the implementation.

Usage Scenario
To help better understand the interactive report generation
module, we illustrate it using a scenario with a designer, Amy,
trying to use UI X-RAY to generate an UI defect report.

After developers finished implementing the UI she designed,
Amy needs to inspect the implementation and give feedback
to the developers on how to revise the implementation. Hav-
ing automatically gotten the screen shot of the implementa-
tion, the image retrieval module selects the corresponding
specification, and these two are used as the input to the UI
discrepancy-identification module. After all of the discrepan-
cies, along with their bounding boxes, are detected and ren-
dered by the interactive report-generation module, Amy can
use this module to inspect all the differences.



Starting from the table view, Amy is able to have a brief look
of the differences according to their severity. She can mouse
over each row in the table to see the corresponding high-
lighted area in the sliding view. By inspecting the the pink
area, Amy can have an initial idea about the reported discrep-
ancy. If it is a false alarm, she can just delete the difference
by clicking the delete icon. In order to further compare the
implementation and the specification, Amy can drag the di-
vider to the highlighted region and compare the correspond-
ing images. If this difference is confirmed, Amy can click the
edit icon to review the quantitative value of the difference. If
needed, she can add more comments on each error type and
save the changes. After iterating the process for all the dis-
crepancies, the result will be saved and can be used as the
UI defect report for developers to revise the implementation
accordingly.

SYSTEM EVALUATION
To evaluate UI X-RAY, we performed a quantitative analysis.
We also collected reviews by experts to verify the effective-
ness and usefulness of UI X-RAY.

Quantitative Evaluation of UI X-RAY
Even though the method behind UI X-RAY is general and
can be applied to different programming environments, we
integrated UI X-RAY’s computer-vision-based analysis into
the iOS application development ecosystem in the form of
unit tests, and evaluated UI X-RAY on 4 fully developed iOS
mobile applications of which the entire development history
was saved.

The performance metric is measured by comparing the cor-
rectness of the UI discrepancies detected by UI X-RAY vs.
those manually reported by UI testers and designers. Another
dimension of comparison involves the time necessary to de-
tect and fix the UI discrepancies detected. Since we had ac-
cess to the full history of the developed apps, we were able to
reproduce all the intermediate versions of each app, examine
the UI defects that were manually detected by the develop-
ment team, compare them with those detected by UI X-RAY,
and measure the time necessary to fix those discrepancies us-
ing manual analysis vs. UI X-RAY. The apps we had access
to were developed in Agile mode.

Our evaluation consisted of the following steps:

1. Locate in the development history the precise point in
which developers were notified of the UI defects and asked
to fix them—this happened at the end of each sprint

2. Go back to the intermediate version of the app right before
the fixes were applied

3. Execute UI X-RAY on that version to compute all the UI
defects on that version of the app

4. Numerically compare the results obtained via manual
methodology vs. UI X-RAY

5. Compare the time involved in detecting and fixing all the
UI discrepancies using the two methodologies

Thanks to record-and-run technologies in modern mobile-
app development for UI testing—such as UI recording in

Table 1. UI discrepancies detection results of manual analysis and UI
X-RAY.

App
True Positives False Negatives

Manual Analysis UI X-RAY Manual Analysis UI X-RAY

App 1 26 135 109 0
App 2 10 61 51 0
App 3 93 699 606 0
App 4 131 336 217 12

Total 260 1,231 983 12

Xcode [13] and Espresso Test Recorder in Android Devel-
opment Tools [2]—the test scripts can be automatically gen-
erated by recording the app execution. Record-and-run pro-
vides a fascinating feature to automatically generate the UI
testing scripts based on the user’s interaction with the app. It
is then sufficient to insert a call to the UI X-RAY API in or-
der to invoke the UI discrepancy detection routine every time
the underlying operating system generates a new view for the
app. The overall detection results are summarized in Table 1.

Figure 10. Experimental results of App 1

Figure 11. Experimental results of App 2

The true-positive rate achieved by UI X-RAY is 99.03%
vs. 20.92% obtained via manual analysis. In total, on the
four apps we examined, UI X-RAY detected 983 real issues
that were not discovered by manual analysis in spite of the
fact that manual analysis was significantly more expensive in
terms of people involved and time spent.



Table 2. Comparison details of Figure 10, 11, 12 and 13

Position and Size (X, Y, W, H) FG/BG Colors (RGB hexcode)
Spec. Impl. Spec. Impl.

(a) (31, 438, 612, 26) (26, 439, 666, 26) FG: 0x000000
BG: 0xFFFFFF

FG: 0x43464A
BG: 0xFFFFFF

Fi
gu

re
10 (b) (193, 902, 196, 22) (194, 903, 189, 22) FG: 0x191919

BG: 0xFFFFFF
FG: 0x45474A
BG: 0xFFFFFF

(c) (586, 1082, 100, 94) (567, 1083, 97, 91) FG: 0xE17901
BG: 0xFFFFFF

FG: 0xE17901
BG: 0xFFFFFF

(d) (17, 1276, 102, 35) (8, 1276, 101, 35) FG: 0xE17901
BG: 0x45474A

FG: 0xE79333
BG: 0x43464A

(a) (33, 646, 660, 36) (28, 630, 636, 36) FG: 0x000000
BG: 0xFFFFFF

FG: 0x000000
BG: 0xFFFFFF

Fi
gu

re
11 (b) (313, 852, 124, 26) (298, 855, 122, 25) FG: 0x000000

BG: 0xFFFFFF
FG: 0x000000
BG: 0xFFFFFF

(c) (31, 1062, 137, 23) (28, 1053, 137, 24) FG: 0x6D6D6D
BG: 0xF9F8F9

FG: 0x6D6D6D
BG: 0xF9F8F9

(d) (46, 1249, 71, 53) (61, 1251, 67, 50) FG: 0x00617E
BG: 0xF4F4F4

FG: 0x00617E
BG: 0xF4F4F4

(a) (214, 70, 213, 35) (214, 70, 214, 36) FG: 0xFFFFFF
BG: 0x374B58

FG: 0xFFFFFF
BG: 0x223842

Fi
gu

re
12 (b) (22, 192, 235, 26) (30, 197, 236, 26) FG: 0xC2CCD4

BG: 0x3E5564
FG: 0xC2C2C2
BG: 0x283740

(c) (31, 645, 142, 29) (31, 646, 136, 29) FG: 0xFFFFFF
BG: 0x688699

FG: 0xFFFFFF
BG: 0x39424A

(d) (22, 1036, 116, 26) (30, 1037, 116, 26) FG: 0xC2CCD4
BG: 0x496576

FG: 0xC2C2C2
BG: 0x233039

(a) (917, 178, 217, 36) (917, 178, 219, 36) FG: 0xFFFFFF
BG: 0x31302F

FG: 0xFFFFFF
BG: 0x545456

Fi
gu

re
13 (b) (798, 686, 248, 84) (850, 682, 248, 84) FG: 0xFFFFFF

BG: 0xFC7409
FG: 0xFFFFFF
BG: 0xFD7409

(c) (890, 715, 63, 28) (947, 712, 55, 26) FG: 0xFFFFFF
BG: 0xFC7409

FG: 0xFFFFFF
BG: 0xFD7409

(d) (521, 887, 196, 23) (512, 884, 191, 23) FG: 0x6D6D6D
BG: 0xF5F4F0

FG: 0x6D6D72
BG: 0xEFEFF4

The number of reported UI defects of each app vary based
on the length of the development lifecycle, distinct UI design
characteristics, and different UI testers. Therefore, the num-
ber of additional true positives detected by UI X-RAY may
differ significantly app by app. For example, in apps 1 and
2, the UI designs are icon- and item-driven and contain much
fewer text fields. This implies that most of defects are the
misalignment of objects or inconsistent sizes. As a result, the
number of additional true positives are close to each other for
these two apps, and less than what reported for apps 3 and
4. On the other hand, apps 3 and 4 contain more tables and
forms, which usually cause UI defects on misalignment of ta-
ble header and cells, inconsistent background colors and font
size, etc. Therefore, UI X-RAY detects more true positives in
apps 3 and 4 than it does in apps 1 and 2.

In terms of time, our analysis of the Agile development data—
diligently stored by the development team using IBM Ratio-
nal Collaborative Lifecycle Management (CLM)—revealed
the following important points:

1. On average, UI defects constitute 60% of the total number
of defects of a mobile app.

2. At the end of each sprint:
• The development team lead spends approximately 1.5

days to manually detect and report the UI inconsisten-
cies on the intermediate version of the app
• Each developer in the team spends approximately 2

days to interpret the development team lead’s report,
fix the UI, test it, and communicate back and forth
with the development team lead until the UI bugs are
deemed fixed

On average, each of the app we examined was developed
by a team of 6 developers, not including the development
team lead, and the entire development lifecycle consisted of 5
sprint. Overall, fixing the UI bugs during the development of
each app required 1.5×5+2×5×6 = 67.5 man days. Con-
versely, UI X-RAY allows for integrating the UI detection
and repairing system directly into the app lifecycle, thereby
making it possible for developers to immediately detect any
UI discrepancy and fix it on the fly with virtually no impact
on the overall development time. Specifically, UI X-RAY
does not only provide accurate detection of UI discrepancies,
but it can also be executed quickly: less than 1 minute per
view. In traditional manual testing, UI defects are reported
and fixed one by one, and this type of procedure is quite inef-
ficient. Instead, UI X-RAY locates multiple bugs in a single
test, reports them straightforwardly on the provided compar-
ison images, and simultaneously records the differences on
each subimage. Hence, developers can resolve all related de-
fects on the same image at once, and save time.

Another important point to notice is the contribution that UI
X-RAY provides in terms of precision. The description of the
UI inconsistencies provided by the development test lead is
reported in CLM in the form of a textual message, which is
often vague and ambiguous. For example: “Fonts are too
large”—which fonts in the view is the development team
lead referring to, and how larger are those fonts?—“Color
is darker than it should be”—which color is the development
team lead referring too, and how darker is it? UI X-RAY
completely resolves this ambiguity by bypassing the need for
textual messages. UI X-RAY uses image recognition to au-
tomatically detect the UI design in the design document—
which often contains hundreds of images—thereby saving
both the development team lead and the programmers from
the burden of having to locate the design specification cor-
responding to each view. Furthermore, the reports generated
by UI X-RAY visually highlight and numerically quantify the
UI inconsistencies between the UI specification and the cor-
responding implementation. Thanks to this feature, the need
for manually describing UI defects and communicating them
is completely bypassed.

We display subjective results of each application from Fig-
ure 10 to 13. We just show 4 representative defects in each
example. All the details on the corresponding discrepancies
are illustrated in Table 2.

Figure 10 (a) and (b) indicate the difference on the font color.
For example, the specification requires black but the imple-
mentation uses gray instead; Figure 10 (c) points out the dis-
crepancies of position and size, and it also implies the left-
margin to the center icon is wrong. The location of that icon
should be moved right by 9 pixels and the icon size should be
reduced by 3 pixels. Figure 10 (d) detects defects in both font
and background colors.

Figure 11 shows multiple mismatched left margins in text
field (a), table content (b), table section header (c), and but-
tons (d). UI X-RAY also points out a discrepancy in Figure 11
(b): the size of the table cells is not assigned well, which re-
sults in the misalignment. A mismatch at Figure 11 (d) im-



Figure 12. Experimental results of App 3

Specification Implementation

(d)

(b), (c)

(a)

Figure 13. Experimental results of App 4

plies that the distance between buttons must be investigated
in order to derive correct position.

Figure 12 shows the discrepancies in a table view. Four de-
fects all indicate that the background colors are wrong since
the specification use darker colors. For the table section head-
ers at (b) and (d), there is an 8-pixel displacement and an in-
consistency in the font color. As for the table content, there is
no position issue at (c).

Figure 13 (a) indicates the defect in the background color of
the table header; Figure 13 (b) points out that the position of
the Yes button is too far from the one of the No button; de-
velopers would convert the distance to the margin between
the two buttons. Figure 13 (c) reports that the height of the
bounding boxes surrounding the Yes text are different, which
implies that the font sizes are different, too: 14 font size
should be used; last, Figure 13 (d) marks that the left-margin
of text region is too small and the font and background color
in the implementation are wrong.

Expert Interviews
We conducted in-depth interviews with three UI/UX design-
ers of a company to validate the usability of UI X-RAY. One
designer (D1) was primarily working on Web application de-
sign but also had some mobile app design experience. The
other two designers (D2, D3) are iOS app design experts. All
the interviews started with several questions to identify their
background and how they did UI testing before. After that,

we gave them a tutorial showing how UI X-RAY worked, let-
ting them use their own computers to try UI X-RAY. In the
end, we asked them post-study questions to gather their feed-
back and suggestions. Each interview lasted between 30 and
60 minutes.

Overall System Usability and Interaction Design
All the designers spoke highly UI X-RAY. Since there was
no tool before to help them compare an implementation with
the corresponding specification, they had all relied on “eye-
balling” the two images and use some graphic design tools
such as Sketch or Adobe Illustrator to make the comparison.
All of them stated that UI X-RAY dramatically speeds up the
comparison job and significantly adds precision to the testing
process. D3 commented: “I think this is really great. I do
everything manually now; I type the notes, record everything
and identify all the little spots, and that takes a lot of time.”
The sliding and comparing functionality received the most
appreciation: “The swiping interaction is really cool” (D3), “I
like the sliding feature a lot since it allows me to directly com-
pare two regions with little occlusion problems” (D1), and
“The sliding interaction can greatly help me to quickly com-
pare my design with the implemented version” (D1). More-
over, they all agreed that the modification and commenting
features were very important for them to finalize the revision
plan, and D3 further commented: “This tool would be very
helpful if a team is not geographically located at the same
site.”.

Suggestions
During the 3 interviews, we also collected several suggestions
on how to improve UI X-RAY. So far, for each inconsistency,
only the differences in color, position and size are reported.
However, sometimes, developers and designers may have dif-
ferent opinions on what should be reported. For instance, in
a grid component, the margin between elements is the most
useful value. More specifically, D2 commented the follow-
ing: “Implementation-wise, different visual parameters, such
as paddings and margins, will be used to decide the position
of an element. Therefore, it would be nice if the system could
provide the differences of these parameters according to the
nature of an element.”

Another suggestion common to all of the designers is that
adding the comparison of interaction behaviors will be very
helpful to see, for example, whether a button clicking behav-
ior is as expected. The designers also had some other sug-
gestions. Specifically, D3 pointed out that it would be useful
to check the static content for typos, while D1, who works
on Web application design as well, suggested that responsive
designs (i.e., the layout can be adjusted according to the res-
olution of the window size) should also be considered when
conducting comparisons.

CONCLUSION AND FUTURE WORK
In this paper, we presented UI X-RAY, an interactive UI test-
ing system to resolve labor-intensive work in finding and fix-
ing UI discrepancies. UI X-RAY features a user-friendly
interface to inspect, annotate, and comment the UI discrep-
ancies found by underlying computer-vision based analysis.
UI X-RAY achieves good outcomes in both quantitative and



qualitative evaluations; in quantitative evaluation, UI X-RAY
exhibits a 99.03% true-positive rate, which significantly sur-
passes the 20.92% true-positive rate obtained by manual anal-
ysis. Furthermore, every evaluation and correction when us-
ing UI X-RAY is done within 1 minute on average vs. hours
required when using manual analysis. In qualitative evalua-
tion, UI X-RAY received extremely positive responses from
professional designers, who reported how UI X-RAY’s inter-
active interface can help them find and comment on discrep-
ancies quickly. Furthermore, UI X-RAY assists programmers
to fix the majority of the UI discrepancies as soon as they arise
during development, which significantly reduces the work-
load on UI testers and designers. Specifically, UI X-RAY
reduces the number of iterations necessary to fix UI discrep-
ancies, and virtually eliminates the need for communication
between developers and UI testers and designers. UI X-RAY
has recently became part of a commercial product.

UI X-RAY includes powerful capabilities to verify UI repre-
sentation and report detailed instructions on how to fix incon-
sistent positions, sizes and colors of objects and fonts. As part
of future work, we are planning to enhance UI X-RAY with
the ability to report inconsistent font face, perform static con-
tent verification (for example, to detect typos in static text),
and execute behavior-based verification.
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